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Abstract. LWE based key-exchange protocols lie at the heart of post-
quantum public-key cryptography. However, all existing protocols either
lack the non-interactive nature of Diffie-Hellman key-exchange or poly-
nomial LWE-modulus, resulting in unwanted efficiency overhead.
We study the possibility of designing non-interactive LWE-based proto-
cols with polynomial LWE-modulus. To this end,
– We identify and formalize simple non-interactive and polynomial

LWE-modulus variants of existing protocols, where Alice and Bob si-
multaneously exchange one or more (ring) LWE samples with polyno-
mial LWE-modulus and then run individual key reconciliation func-
tions to obtain the shared key.

– We point out central barriers and show that such non-interactive
key-exchange protocols are impossible if:
1) the reconciliation functions first compute the inner product of the
received LWE sample with their private LWE secret. This impossibil-
ity is information theoretic.
2) One of the reconciliation functions does not depend on the error
of the transmitted LWE sample. This impossibility assumes hardness
of LWE.

– We give further evidence that progress in either direction, of giving
an LWE-based NIKE protocol or proving impossibility of one will
lead to progress on some other well-studied questions in cryptogra-
phy.

Overall, our results show possibilities and challenges in designing simple
(ring) LWE-based non-interactive key exchange protocols.
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1 Introduction

In 1976, Diffie and Hellman [DH76] proposed an extremely elegant key-
exchange protocol, in which two parties, Alice and Bob, exchange re-
spective group elements ga, gb simultaneously, where g is a generator of
a publicly chosen group G and a, b ∈ [|G|] are uniformly chosen secret
elements. Alice and Bob then locally perform a single group exponen-
tiation in order to derive the shared key, gab. This simple idea lies at
the foundation of public key cryptography, and has been widely used in
practice throughout the years.
Two decades later, Shor [Sho94] showed that efficient quantum algo-
rithms could, in principle, break the Diffie-Hellman key-exchange pro-
tocol, as well as other widely used assumptions (e.g. Factoring). Thus,
with the development of quantum computers on the horizon, the im-
portance of designing post-quantum secure key-exchange protocols, that
can replace current standards, has been recognized. As part of this effort,
the National Institute of Standards and Technology (NIST) decided to
look into post-quantum cryptography standardization and is hosting a
post-quantum cryptography call of proposals [NIS]. One of the major
primitives that they seek is a key-encapsulation mechanism.

1.1 (Ring) LWE based Key Exchange Protocols
A significant portion of the algorithms qualified to the second round of
the NIST call for proposals [SAB+17], [NAB+17], [LLJ+17], [PAA+17],
[GMZB+17] is based on the (ring) learning with errors (LWE) assump-
tion [Reg05,LPR10]. A remarkable feature of this assumption (and con-
sequently of the proposals) is that its average-case hardness is based on
the worst-case hardness of lattice problems, which themselves are con-
jectured to be secure against efficient quantum algorithms.
Those proposals use two routes to achieve key-exchange, one is through
public-key encryption and the other is through reconciliation. However,
all of them lack the non-interactive nature of the key-exchange protocol
of Diffie-Hellman, as explained below.

Key-exchange through public-key encryption. In the first case,
Alice samples a secret & public-key pair and sends her public-key to
Bob. Then, Bob picks a desired shared key and sends it to Alice, en-
crypted under her public-key. Finally, Alice decrypts Bob’s message to
recover the shared key. While conceptually simple, this approach lacks
some of the advantages of the Diffie-Hellman protocol. Firstly, Bob has
complete control over the shared key. Secondly, the protocol is inherently
interactive – the parties need at least two rounds of interaction.

Key-exchange through reconciliation. The reconciliation approach
was introduced by Ding et al. [DXL12] and Peikert [Pei14] and was imple-
mented and improved in later works [ADPS16,BCNS14]. The most basic
version of such reconciliation-based protocols has a simple description5

5 For simplicity, we only describe the LWE-based variant; the ring version is obtained
by replacing A,x1,x2, e1, e2 with ring elements from some chosen polynomial ring
and using the corresponding polynomial multiplication.
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Alice Bob

A ∼ U(Zn×nq )x1, e1 ∼ Xn x2, e2 ∼ Xn

bT1 = xT1 A + eT1

b2 = Ax2 + e2

bxT2 b1 · 4/qc (mod 2)

Rec1(A,x1, e1, b2) Rec2(A,x2, e2, b1)

Fig. 1. Alice and Bob simultaneously exchange LWE samples using the same public
matrix A. After receiving b2, Bob sends the second most significant bit of xT2 b1 to
Alice. Both players then apply their respective key reconciliation functions on the
variables they have to produce a shared key.

(See Figure 1) : Let A be a random public n×n matrix over Zq where q is
polynomial in n and let X be a noise distribution, then the parties act as
follows: Alice randomly picks x1, e1 from Xn and sends b1 = xT1 A + e1

to Bob, while Bob simultaneously picks random x2, e2 from Xn and
sends b2 = Ax2 + e2 to Alice. After receiving b1, Bob sends to Alice
the second most significant bit of xT2 b1, i.e., b4/q · xT2 b1c (mod 2). To
agree on a common key, Alice and Bob first compute the inner product
of their secret and incoming message and obtain xT1 Ax2 + xT1 e2 and
xT1 Ax2 + eT1 x2 respectively. The small magnitude of Alice and Bob’s
secret and noise already allows them to achieve approximate agreement:
the most significant bit of xT1 Ax2 + xT1 e2 and xT1 Ax2 + eT1 x2 is often
the same. To achieve exact agreement, they run a simple key reconcili-
ation procedure, where Bob sends the second most significant bit as an
additional hint.

1.2 (Ring) LWE based Non-Interactive Key
Exchange?

As discussed above, Diffie-Hellman key exchange allows parties to send
their messages simultaneously or communicate in a non-interactive way
(e.g. by publishing them on Alice’s and Bob’s public websites). In the
contrast, current proposed LWE-based key exchange protocols require
additional interactions. Even though the additional interaction is only a
single bit (as is the case in Figure 1), one extra round of a practical key
exchange protocol may result in significant delays when used at a large
scale (such as that of the internet). This motivates the main question
that we study in this paper:
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Can we have practical (ring) LWE-based non-interactive key exchange
protocols? Or are such protocols inherently interactive?

A remark on LWE-modulus. Throughout the paper, we focus on poly-
nomial LWE-modulus. We observe that if superpolynomial LWE-modulus
is to be considered, LWE-based key exchange in Figure 1 can be made
non-interactive. That’s because the most significant bits of xT1 b2 and
xT2 b1 agree with probability 1 − Θ(nB2/q), for a noise distribution X
whose support is included in [−B,B]. If the modulus to noise rate is large
(i.e. superpolynomial in the security parameter), then the probability of
disagreement of their most significant bits is negligible, and hence the
above non-interactive protocol is sufficient. However, in the case of a
polynomially bounded q, the disagreement probability is non-negligible.
Given the extremely demanding efficiency constraints on practical im-
plementations6, it would be highly desirable to have variants of such
LWE-based key-exchange protocol in which the disagreement probabil-
ity is negligible even in the case that q is as small as a polynomial in
the security parameter. Additionally, requiring a large modulus to noise
rate affects the hardness of the corresponding LWE assumption, since
the worst-to-average case reductions translate this rate to the gap in the
promise lattice problems [Pei09]. Namely, LWE with large modulus-to-
noise rate is a stronger assumption (i.e. more susceptible to polynomial-
time attacks) than LWE with a smaller modulus-to-noise rate.

1.3 Our Results

In this paper, we explore the possibility of attaining (ring) LWE-based
non-interactive key exchange (NIKE) (with modulus polynomial in the
security parameter).

Our focus. We focus on the setting where Alice and Bob only send one
or a few (ring) LWE samples to each other; similarly to the protocol in
Figure 1, but without the last message sent from Bob to Alice.

The main motivation for studying this setting is that perhaps it is the
simplest setting which captures natural non-interactive variants of cur-
rent LWE based key exchange protocols. Therefore, impossibility results
will give a theoretical justification for current LWE based key exchange
protocols. On the other hand, possibility results will yield Diffe-Hellman
like non-interactive protocols.

Moreover, NIKE in this setting is simply characterized by two efficiently
computable key reconciliation functions Rec1,Rec2, such that

– The outputs of Alice and Bob agree with each other with overwhelm-
ing probability, that is, Rec1(A,x1, e1, b2) = Rec2(A,x2, e2, b1)
holds with overwhelming probability (recall that b1 := ATx1 + e1

and b2 := Ax2 + e2).

6 a typical size of q is ≈ 213 and there are proposals that even use q = 257 [LLJ+17].
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– The output of the protocol is pseudo-random even when conditioned
on the transcript, that is, it is hard to predict Rec1(A,x1, e1, b2)
given A, b1, b2.

Natural choices of reconciliation functions. Observe that in Fig-
ure 1, Alice and Bob achieve approximate agreement by computing xT1 b2
and xT2 b1, respectively. These values are noisy versions of xT1 Ax2 and
their most significant bit agrees with probability 1 − Θ(nB2/q) when
the support of X is in [−B,B]. Based on this observation, one may con-
sider the following three families of reconciliation functions (in increasing
order of generality).

1. Rec1 and Rec2 are arbitrary efficient functions (not necessarily the
most significant bit) on xT1 b2 and xT2 b1 respectively.

2. Rec1 and Rec2 are arbitrary efficient functions on A,x1, b2 and
A,x2, b1 respectively.

3. Rec1 and Rec2 are arbitrary efficient functions on A,x1, e1, b2 and
A,x2, e2, b1 respectively.

Note that the third family captures all possible reconciliation functions.
Our main results rule out the first and second families of reconciliation
functions even when multiple LWE samples are exchanged, and point out
central efficiency barriers for the third family.

First result (Section 3). One natural idea to remove the interaction
would be to somehow “amplify” the agreement probability by sending
more LWE samples and generating more independent samples from the
joint distribution (X,Y ) where X := xT1 b2 and Y := xT2 b1, then apply
Rec1 and Rec2 on independent samples from X and Y respectively.
In Theorem 1, we show that for any m, balanced Rec1,Rec2 (see Defini-
tion 1) and non-trivial noise distribution, Rec1(Xm) = Rec2(Y m) holds
with probability at most 1 − Ω(1/q2). This implies that such reconcili-
ation functions cannot exist (this impossibility is information theoretic
and holds even for computationally inefficient reconciliation functions).
Our results naturally extend to the case of ring LWE.

Second result (Section 4). Even though the above result captures
known constructions, it does not rule out a slightly more general case
where the reconciliation functions depend on A. Indeed, given X ′ :=
(A,X) and Y ′ := (A,Y ), Alice and Bob can agree on an insecure
random bit with probability 1 by evaluating a balanced function of A
(while ignoring X and Y ). Of course, such protocols are not suitable
for key agreement, since the common random bit is not pseudo-random
conditioned on A.
In Theorem 3, we show that the reconciliation fuctions Rec1 and Rec2
have to depend on the LWE noises e1 and e2 respectively. For instance,
the above theorem excludes a more general case than family 2 where the
reconciliation functions are of the form Rec1(A,x1, e1, b2) = h1(A,x1, b2)
and Rec2(A,x2, e2, b1) = h2(A,x2, e2, b1). In particular, it rules out the
case where the joint distribution is (X ′,Y ′). However, in contrast to The-
orem 1 which holds unconditionally, Theorem 3 assumes the hardness of
the LWE problem. Our results extend to the case of ring LWE and to a
polynomial number of samples.
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Third result (Section 5). The above two results rule out the most
natural choices of key reconciliation functions based on variants of inner
product, unconditionally or under the LWE assumption. In Section 5.1,
we show that the existence of efficient Rec1 and Rec2, which depend on
all of their inputs, cannot be ruled out (at least as long as the existence of
iO is a possibility). In particular, in Theorem 4, we show that there exists
an instantiation of the NIKE protocol in our framework that is based on
indistinguishability obfuscation (iO) and puncturable PRFs [BZ17].

However, we identify a crucial restriction on the complexity of reconcili-
ation functions. In Theorem 5, we show that the reconciliation functions
themselves actually have to contain cryptographic hardness, in the sense
that they directly yield weak pseudorandom functions. Therefore, the
reconciliation functions have to be at least as complex as weak pseu-
dorandom functions and hence suffer from the complexity limitations
and attacks on weak pseudorandom functions. Moreover, this connection
shows that any NIKE protocol based on hardness of LWE with polyno-
mial modulus, gives rise to new constructions of weak pseudorandom
functions based on the hardness of LWE with polynomial modulus. Such
constructions have been an open problem almost since the introduction
of the LWE assumption, and thus we view Theorem 5 as an indication
that finding appropriate reconciliation functions requires new techniques.

1.4 Discussion and Open Problems

When parties exchange only LWE samples, we rule out the most natural
choices of key reconciliation functions. Additionally, we point out that
non-interactive key reconciliation functions, unlike interactive ones, have
to be as complex as weak pseudorandom functions. Overall, our results
show possibilities and challenges in designing simple (ring) LWE-based
non-interactive key exchange protocols.

An interesting open direction is to understand what happens when the
messages contain extra information, apart from the LWE samples. To
this end, one would have to come up with a natural and simple form
of messages (based on LWE) and explore the possibility of basing non-
interactive key exchange on it. For instance, a natural idea is to consider
LWE samples together with some leakage about the secrets. We remark
that Theorem 5 continues to hold even if the leakage function is pseudo-
random.

2 Preliminaries

We now provide some useful notation and definitions. We denote a sample
drawn from D by x ∼ D and a sample of the uniform distribution over
S by x ∼ S.

Definition 1. A function f : S → {0, 1} is called balanced respect to
distribution D if Ex∼D[f(x)] = 1/2.
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Definition 2. A distribution X over Zq is B-bounded if its support is
included in [−B,B].

We formally define the class of all non-interactive key exchange protocols
that could exist. We use negl(λ) to denote any function g : R → R that
satisfies g(λ) ≤ O(n−c) for all constants c ∈ N.

Definition 3. For a security parameter λ > 0, a non-interactive key-
exchange protocol consists of two poly(λ)-time algorithms b1 and b2 and
two poly(λ)-time computable boolean functions Rec1 and Rec2 that sat-
isfy the conditions below (where (r, r1, r2) is a random source where r
is a source of shared randomness and r1, r2 are private sources of ran-
domness of the two parties)

1. Pr
r,r1,r2

[Rec1(r, r1, b2(r, r2)) = Rec2(r, r2, b1(r, r1))] ≥ 1− negl(λ) ,

2. For any probabilistic poly(λ)-time algorithm A,

Pr
r,r1,r2

[A(r, b1(r, r1), b2(r, r2)) = Rec1(r, r1, b2(r, r2))] ≤ 1

2
+negl(λ) .

Finally, we describe the Learning-with-Errors (LWE) assumption.

Definition 4. [Reg05] The LWE assumption for integers n,m, q and
noise distribution X over Zq states that,

(A, b := xTA + e) ≈c (A,u),

where A ∼ Zn×mq , u ∼ Zmq , x ∼ Xn and e ∼ Xm.

3 (Information Theoretic) Impossibility
of Amplification with Multiple Samples

Before stating the main Theorem of this section, we provide some defi-
nitions and notation.

Definition 5. A distribution X over any group G (e.g. G = Zq) is
symmetric if PrX∼X [X = z] = PrX∼X [X = −z] for any z ∈ G.

Given a distribution X over Zq, let (Xn)∗ be the distribution of w =
(w(1), w(2), . . . , w(n)) drawn from Xn conditioned on the event that w is
not a zero-divisor, that is gcd(w(1), w(2), . . . , w(n), q) = 1.

Theorem 1. Let n, q ≥ 1 be integers and X be a symmetric distribution
over Zq such that for any a ∈ Zq \ {0}, it holds that PrX∼X [aX =
0] ≤ 9/10 and PrX∼X [aX = q/2] ≤ 9/10. Let µX (X,Y ) be the joint
distribution of

X = xT1 Ax2 + xT1 e2 and Y = xT1 Ax2 + eT1 x2,

where A ∼ U(Zn×nq ), e1, e2 ∼ Xn and x1,x2 ∼ (Xn)∗. Then, for any
m ≥ 1, and any balanced functions Rec1,Rec2 : Zmq → {0, 1} respect to
the marginal distributions of µ⊗mX , it holds that

Pr
(X,Y )∼µ⊗m

X

[Rec1(X) = Rec2(Y )] ≤ 1−Ω(1/q2).
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Our theorem also holds for the ring case with the same parameters (See
Theorem 6 in Appendix A). This theorem shows that no matter how
many independent samples are drawn and no matter what procedures
are applied on those samples, Alice and Bob can agree with each other
on a random bit with probability at most 1 − Ω(1/q2). Note that Alice
and Bob have to marginally produce a uniform bit as captured in the
condition that Rec1 and Rec2 are balanced.
Our theorem applies to the most commonly used noise distributions. For
instance, the discrete Gaussian distribution Dσ with standard deviation
σ > 10 satisfies the conditions of Theorem 1. First, the discrete Gaussian
is a symmetric distribution. Second, if x ∼ Dσ, then from monotonicity
of Dσ, for any a ∈ Zq \ {0}, Pr[ax = q/2] ≤ Pr[ax = 0]. Therefore, it is
enough to show that for any a ∈ Zq \ {0}, Pr[ax = 0] ≤ 9/10 which is
straightforward to verify7.
Additionally, the condition of Theorem 1 that for any a ∈ Zq \ {0},
Pr[aX = 0] ≤ 9/10 and Pr[aX = q/2] ≤ 9/10 is quite mild. For instance,
if q > 2 is prime, then this condition simplifies to the assumption that
the support of X is not equal to {0}. Also, for general q if the support
of X is 1/10-far from a proper subgroup or a coset of a proper subgroup
of Zq, then this assumption is satisfied.
Notice that µX (X,Y ) as defined in Theorem 1 does not correspond to
the joint distribution described in the introduction, since x1,x2 are sam-
pled from (Xn)∗. This is without loss of generality because if w ∼ Xn,
then the probability that gcd(w(1), w(2), . . . , w(n), q) 6= 1 is smaller than
the probability that w(1), w(2), . . . , w(n) all belong to a proper subgroup
of Zq, which is less than (9/10)n. So, the distribution of (X,Y ) is at
most O(m/(9/10)n) far from the distribution of m samples drawn as de-
scribed in the introduction. Even though this is a very small change in
the protocol, it will simplify our proof a lot, since in this case the value
xT1 Ax2 is a uniform element in Zq 8.
Our Theorem 1 shows that in this regime, it is information theoretically
impossible to agree on a common bit with probability 1−o(1/q2). In fact,
the problem of generating common randomness by observing indepen-
dent samples from two correlated distributions (or a joint distribution) is
known as “Non-interactive Agreement Distillation” in the area of infor-
mation theory (See Section 3.1) and the notion of maximal correlation
exactly captures this problem (upto a polynomial factor in the error).
Even though we could prove our theorem in a self-contained manner, we
feel this connection provides more insight. Therefore, in the next sec-
tion we present some basic facts about maximal correlation and then
present a proof through this notion. In Appendix A, we also present a
self-contained proof of Theorem 1 using Fourier analysis and extend this
to the ring LWE case (Theorem 6).

7 Note that by symmetry and monotonicity of Dσ, Pr[ax = 0] ≤ Pr[a(|x| − 1) =
0] + Pr[x = 0]. Combining with the fact that Pr[ax = 0] + Pr[a(|x| − 1) = 0] ≤ 1 for

a 6= 0, and Pr[x = 0] ≤ 1/(1 + 2e−1/σ2

), we conclude that Pr[ax = 0] ≤ (1 + Pr[x =
0])/2 ≤ 9/10 for σ > 10.

8 If w = (w(1), w(2), . . . , w(n)) such that gcd(w(1), w(2), . . . , w(n), q) = 1 and u is
uniform in Znq , then wTu is also uniform in Zq.
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3.1 Maximal Correlation and Non-interactive
Agreement Distillation

The Non-interactive Agreement Distillation problem, parameterized by
a joint distribution µ(x, y) is defined as follows: Two players, Alice and
Bob, observe sequences (X1, . . . , Xm) and (Y1, . . . , Ym) respectively where
{(Xi, Yi)}mi=1 are drawn i.i.d. from µ(x, y). Both players look at their
share of randomness, apply a function and output a bit. Their goal is
to maximize the probability that their output bits agree, while ensuring
that they are marginally uniform.
Hirschfeld [Hir35] and Gebelein [Geb41] introduced the notion of maxi-
mal correlation, which was later studied by Rényi [Rén59]. It turns out
that maximal correlation (almost tightly) captures the maximum agree-
ment probability that the players can get.

Definition 6 (Maximal Correlation). For a joint distribution µ over
GA ×GB, its maximal correlation ρ(µ) is defined as follows,

sup
f,g

{
E

(x,y)∼µ
[f(x) · g(y)]

∣∣∣∣ f : GA → R, EµGA
[f ] = EµGB

[g] = 0

g : GB → R, VarµGA
[f ] = VarµGB

[g] = 1

}
,

where µGA and µGB are the marginal distributions of µ.

In order to analytically capture maximal correlation, let us define, for
any joint distribution µ over GA×GB , the |GA|× |GB | matrix Mµ given
by

Mµ(x, y) =
µ(x, y)√
µA(x)µB(y)

.

where µA and µB are the marginal distributions of µ.

Fact 2 The maximal correlation ρ(µ) is equal to the second largest sin-
gular value of Mµ, denoted as σ2(Mµ).9

In the seminal work of [Wit75], it was shown that maximal correlation
actually captures (up to a square root factor), the best agreement prob-
ability that the players can get even with an infinite number of samples!

Lemma 1. Suppose ρ(µ) = 1− ε, then for any m ≥ 1, f : GmA → {0, 1}
and g : GmB → {0, 1} with E

µ⊗m
X

[f ] = E
µ⊗m
Y

[g] = 1/2, it holds that

Pr
(X,Y )∼µ⊗m

[f(X) = g(Y )] ≤ 1− ε/2. (1)

Moreover, there exist m, f, g such that E
µ⊗m
X

[f ] = E
µ⊗m
Y

[g] = 1/2 and

Pr
(X,Y )∼µ⊗m

[f(X) = g(Y )] ≥ 1− arccos(ρ(µ))

π
≥ 1−

√
2ε. (2)

9 The top singular value being 1.
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3.2 Bounding Maximal Correlation

Given Lemma 1, it suffices to upper bound the maximal correlation of
µX (X,Y ). We exploit the special form of our distribution, namely that
X is distributed uniformly in Zq and X−Y is distributed as some “noise
distribution” ξ. For such distributions, the maximal correlation is much
easier to analyze. In this section, we prove the following lemma.

Lemma 2. Let n, q ≥ 1 be integers. For a distribution X over Zq and
the joint distribution µX that satisfies the conditions of Theorem 1, it
holds that

ρ(µX ) ≤ 1−Ω(1/q2).

Theorem 1 follows immediately by combining Lemma 1 and Lemma 2.
To prove Lemma 2, we consider a more general class of joint distributions
called Cayley Distributions and characterize their maximal correlation.

Definition 7 (Cayley Distributions). A joint distribution µ over
Zkq × Zkq is said to be a Cayley distribution if there exists a “noise dis-
tribution” ξ : Zkq → R≥0, such that,
(i) ξ(z) = ξ(−z) for all z ∈ Zkq and

(ii) µ(x,y) = ξ(x−y)

qk
for all x,y ∈ Zkq .10

A Cayley distribution can be viewed as sampling x uniformly at random
in Zkq , sampling z ∼ ξ and setting y = x + z. Note that a Cayley
distribution µ is symmetric and has uniform marginals on Zkq , so its
maximal correlation is given by the second largest eigenvalue of Mµ (by
Theorem 2 and the fact that for symmetric matrices, singular values
are same as eigenvalues). Interestingly, the eigenvectors of Mµ can be
completely characterized in a way that does not depend on the noise
distribution ξ. This makes it easy to get a handle on the eigenvalues,
which leads to the following lemma.

Lemma 3 (Maximal Correlation of Cayley Distributions [Lov75]).
For a ∈ Zkq , define the character χa : Zkq → C as χa(x) = e−2πi·〈a,x〉/q.
Let µ be any Cayley distribution over Zkq × Zkq , with associated noise
function ξ. Then

ρ(µ) = max
a∈Zk

q \{0k}
E

e∼ξ
[χa(e)].

We point out that Definition 7 and Lemma 3 generalize to all finite
abelian groups G. However for concreteness, we only focus on our special
case of G = Zkq . While this lemma is standard, we include a proof for
completeness.

Proof. We interpret χa as a vector in Cq
k

indexed by elements in Zkq .

It is straightfoward to verify that χa ∈ Cq
k

is an eigenvector of Mµ

with corresponding eigenvalue Ee∼ξ[χa(e)]. Note that since µ is a Caley

10 Observe that since ξ is a probability distribution over Zkq , it follows that µ is also a
probability distribution.
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distribution, Mµ(x,y) = qk · µ(x,y). Fix any a ∈ Zkq . For any x ∈ Zkq ,
it holds that

(Mµχa)(x) =
∑
y∈Zk

q

Mµ(x,y) · χa(y) =
∑
y∈Zk

q

(qk · µ(x,y)) · χa(y)

=
∑
y∈Zk

q

ξ(y − x) · χa(y) =
∑
e∈Zk

q

ξ(e) · χa(x + e)

=

∑
e∈Zk

q

ξ(e) · χa(e)

 · χa(x)

= E
e∼ξ

[χa(e)] · χa(x) .

Note that the largest eigenvalue is Ee∼ξ[χa(e)] = 1 given by a = 0k be-
cause for any e ∈ Zkq , χ0k (e) = 1 and |χa(e)| ≤ 1 if a 6= 0k. Hence, ρ(µ),
which is the second largest eigenvalue ofMµ, is maxa∈Zk

q\{0k} Ee∼ξ[χa(e)].

Proof (Proof of Lemma 2). Note that µX is a Cayley distribution over
Zq × Zq with associated noise distribution ξ(z) = Pr[xT1 e2 − eT1 x2 = z],
where e1, e2 are drawn from Xn and x1,x2 are drawn from (Xn)∗. First,
ξ(z) = ξ(−z) for any z ∈ Zq, since xT1 e2 and eT1 x2 are drawn from
the same distribution, and so xT1 e2 − eT1 x2 is distributed identically to
eT1 x2 − xT1 e2. Second, because xT1 Ax2 + xT1 e2 is distributed uniformly
over Zq and is independent from xT1 e2−eT1 x2, we have that µX (X,Y ) =

Pr[xT1 Ax2 + xT1 e2 = X and xT1 e2 − eT1 x2 = X − Y ] = ξ(X−Y )
q

.
By Lemma 3, ρ(µX ) = maxa∈Zq\{0} Ee∼ξ[χa(e)]. Fix an arbitrary a ∈
Zq \ {0}, we need to show that |Ee∼ξ[χa(e)]| ≤ 1 − Ω(1/q2). This is
implied by Claim 1 and Claim 2 below.

Claim 1 |Ee∼ξ[χa(e)]| ≤ maxc∈Zn
q \{0n} |Ee∼Xn [χc(e)]|.

Proof. Note that

| E
e∼ξ

[χa(e)]| =
∣∣ E
x1,x2∼(Xn)∗

[
E

e1,e2∼Xn
[χa(xT1 e2 − eT1 x2)]

]∣∣
≤ E

x1,x2∼(Xn)∗

[∣∣ E
e2∼Xn

[χax1(e2)] · E
e1∼Xn

[χax2(−e1)]
∣∣]

≤ E
x1∼(Xn)∗

[∣∣ E
e2∼Xn

[χax1(e2)]
∣∣]

where the second line follows from triangle inequality and the indepen-
dence of e1 and e2, the third line is because Ee2∼Xn [χax1(e2)] and
Ee1∼Xn [χax2(−e1)] are reals of absolute value at most 1. Observe that
for any fixed x1 from (Xn)∗, ax1 6= 0n so that

∣∣Ee2∼Xn [χax1(e2)]
∣∣ is at

most maxc∈Zn
q \{0n} |Ee∼Xn [χc(e)]| and the desired conclusion follows.

Claim 2 For any c ∈ Znq \ {0n}, |Ee∼Xn [χc(e)]| ≤ 1−Ω(1/q2).

Proof. Because each coordinate of e is drawn independently from X ,

E
e∼Xn

[χc(e)] =
n∏
i=1

E
z∼X

[χci(z)].

11



Since X is symmetric, for any i ∈ [n], Ez∼X [χci(z)] is real with absolute
value at most 1. Therefore, it suffices to show that |Ez∼X [χci(z)]| ≤
1−Ω(1/q2) for an arbitrary i ∈ [n]. Fix an i ∈ [n] such that ci 6= 0 and
observe that

E
z∼X

[χci(z)] ≤ 1− Pr
z∼X

[ciz 6= 0] ·Ω
(

1

q2

)
,

because if ciz 6= 0, then the real part of χci(z) is at most cos( 2π
q

) ≤
1− (1/q2)11. Similarly,

E
z∼X

[χci(z)] ≥ − 1 + Pr
z∼X

[ciz 6= q/2] ·Ω
(

1

q2

)
holds because if ciz 6= q/2, then the real part of χci(z) is at least cos(π+
2π
q

) ≥ −1+(1/q2)12. By our assumption on X , we have that Prz∼X [ciz 6=
q/2] ≥ 0.1 and Prz∼X [ciz 6= 0] ≥ 0.1. Hence, |Ez∼X [χci(z)]| ≤ 1 −
Ω(1/q2) which concludes the proof.

For the interested reader, we provide a more self-contained proof in Ap-
pendix A which is equivalent to an unrolling of the above proof, but is
much more succinct because we do not use the more general statement
of Lemma 1 about maximal correlation. In Appendix A, we also give an
extension of the proof to the case of Ring-LWE.

4 (Computational) Impossibility of
Noise-Ignorant Key Reconciliation
Functions

Let us set up some basic notation. For distributions X ,Y over G, we use
RD2(X||Y) = Ea∼X [Prx∼X [x = a]/Pry∼Y [y = a]] to denote the powers
of their Rényi divergence [vEH14]. We use 1 + X to denote the distri-
bution which samples x from X then outputs 1 + x. And X + X ′ is the
distribution obtained as x+ x′ for x ∼ X and x′ ∼ X ′.

Theorem 3. Let n ≥ 1, q = poly(n),m = poly(n) be integers and X
be a noise distribution over Zq such that RD2(1 + X||X ) = 1 + γ. Let
µX (X,Y ) be the joint distribution of

X = (A,x1, e1, b2) and Y = (A,x2, b1),

where A ∼ U(Zn×nq ), e1, e2 ∼ Xn and x1,x2 ∼ Xn, b1 = xT1 A + eT1
and b2 = Ax2 + e2.
Suppose that f and g are efficiently computable boolean functions that
reach key agreement with error at most ε. The domains of Rec1 and Rec2
are the support of the marginal distributions µ⊗mX and µ⊗mY respectively.
Then, m independent samples of (A, b2) can be efficiently distinguished
from m independent samples (A,u) where u ∼ U(Znq ) with advantage at
least Ω(1/q4mγ)−O(

√
ε).

11 Because for x ∈ [−π/2, π/2], cos(x) ≤ 1− x2/(4π2).
12 Because for x ∈ [−π/2, π/2], cos(π + x) ≥ −1 + x2/(4π2).
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Our theorem also holds for the ring case. This theorem implies that as
long as RD2(1 + X||X ) is polynomial in n and one party’s key recon-
ciliation function does not depend on its noise, then (ring) LWE sam-
ples (associated with error X ) are not pseudorandom. The condition of
RD2(1 +X||X ) captures a large class of noise distributions including the
discrete Gaussian distribution 13.
Let X ′ over Zq be the distribution that outputs 1 with probability
α =

√
1/mγ and outputs 0 otherwise. Let Z = U(Zq)n×n × Xn × Xn.

Theorem 3 follows from the next two lemmas.

Lemma 4. Let {Ui}mi=1 ∼ Z⊗m, {ui}mi=1,∼ U(Znq )⊗m, {u′i}mi=1 ∼ U(Znq )⊗m

and {wi}mi=1 ∼ (X ′n)⊗m. Then,

Pr[f({Ui,ui}mi=1) 6= f({Ui,u
′
i}mi=1)]

≤ Pr[f({Ui,ui}mi=1) 6= f({Ui,ui + wi}mi=1)] ·O
(
q2
√
mγ
)
.

Lemma 5. Let bi = Aixi + ei and b′i = Aix
′
i + e′i, where {Ai}mi=1 ∼

U(Zn×nq )⊗m and {xi}mi=1, {ei}mi=1, {x′i}mi=1, {e′i}mi=1 ∼ (Xn)⊗m and let
{yi}mi=1 ∼ (Xn)⊗2, {wi}mi=1 ∼ (X ′n)⊗m. It holds that

Pr[f({Ai,yi, bi}mi=1) 6= f({Ai,yi, b
′
i}mi=1)] ≥ 1/2− 2ε, (3)

and

Pr[f({Ai,yi, bi + wi}mi=1) 6= f({Ai,yi, bi}mi=1)] ≤ O(
√
ε). (4)

We first prove Theorem 3 using Lemmas 4 and 5. In the rest of this
section, we prove Lemmas 4 and 5. Lemma 4 is based on Fourier analysis
and works for any boolean function f . Lemma 5 relies on the assumption
that f, g are efficient key reconciliation functions and g does not depend
on its noise.

4.1 Proof of Theorem 3

Let f and g be key reconciliation functions satisfying the conditions of
Theorem 3. We wish to distinguish between m i.i.d. samples {(Ai, bi)}mi=1

from m i.i.d. samples {(Ai,ui)}mi=1.
First, note that if

|Pr[f({Ai,xi, ei,ui}mi=1) = 0]− Pr[f({Ai,xi, ei, bi}mi=1) = 0]| ≥ α/q2,

where {xi}mi=1, {ei}mi=1 ∼ (Xn)⊗m, there exists a polynomial time dis-
tinguisher, since xi and ei are efficiently sampleable.
Otherwise, from Equation (3) of Lemma 5, we have that

Pr[f({Ai,xi, ei,ui}mi=1) 6= f({Ai,xi, ei,u
′
i}mi=1)] ≥ 2ε+ 2α/q2,

13 In particular, Bogdanov et al. [BGM+16] showed that RD2(1 + Dσ||Dσ) ≤
exp(2π(1/σ)2) is at most a constant for any discrete Gaussian distribution Dσ with
standard deviation σ ≥ 1.
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where u′i ∼ U(Znq ). Combining this with Lemma 4, we get that

Pr[f({Ai,xi, ei,ui}mi=1) 6= f{Ai,xi, ei,ui +wi}mi=1)] ≥ Ω
(
α2

q4
+
αε

q2

)
,

where wi ∼ X ′n. But, from Equation (4) of Lemma 5, we have that

Pr[f({Ai,xi, ei, bi}mi=1) 6= f({Ai,xi, ei, bi + wi}mi=1)] ≤ O(
√
ε)

Thus, we distinguish betweenm i.i.d. samples {(Ai,ui)}mi=1 and {(Ai, bi)}mi=1

by computing Pr[f({Ai,xi, ei,yi}mi=1) 6= f({Ai,xi, ei,yi + wi}mi=1)],
where {yi}mi=1 are the challenge samples. This gives us an advantage
of Ω(α2/q4)−O(

√
ε).

4.2 Proof of Lemma 4
Let Re(z) denote the real part of any z ∈ C. We fix {Ui}mi=1 and for any
u = {ui}mi=1 ∈ (Znq )⊗m, let F (u) = (−1)f({(Ui,ui)}mi=1), then

Pr [f({(Ui,ui + wi)}mi=1) 6= f({(Ui,ui)}mi=1))] =
1− E[F (u)F (u + w)]

2
,

where u ∼ U(Znq )⊗m,w ∼ (X ′n)⊗m and w = {wi}mi=1.

For any c ∈ (Znq )m, let F̂ (c) = Eu∼U(Zn
q )⊗m [F (u)χc(−u)]. Note that for

any u ∈ (Znq )m, F (u) =
∑

c∈(Zn
q )m F̂ (c)χc(u). Finally, because F is real,

E[F (u)F (u + w)] = E[F (u)F (u + w)].

E[F (u)F (u + w)]

=
∣∣∣F̂ (0nm)

∣∣∣2 +
∑

c∈(Zn
q )m\{0nm}

∣∣∣F̂ (c)
∣∣∣2 E[χc(w)]

=
∣∣∣F̂ (0nm)

∣∣∣2 +
∑

c∈(Zn
q )m\{0nm}

∣∣∣F̂ (c)
∣∣∣2 E[Re(χc(w))]

≤
∣∣∣F̂ (0nm)

∣∣∣2 +

(
max

c∈(Zn
q )m\{0nm}

E[Re(χc(w))]

) ∑
c∈(Zn

q )m\{0nm}

∣∣∣F̂ (c)
∣∣∣2


≤
∣∣∣F̂ (0nm)

∣∣∣2 +

(
max

c∈(Zn
q )m\{0nm}

E[Re(χc(w))]

)(
1−

∣∣∣F̂ (0nm)
∣∣∣2)

where the first line is by expanding F using its Fourier representation
and linearity of expectation, the second line is because E[F (u)F (u +
w)] is real, and the last line uses Parseval’s identity, which states that∑

c

∣∣∣F̂ (c)
∣∣∣2 = E

[
|F (u)|2

]
= 1.

Similarly to the analysis of Claim 2, maxc∈(Zn
q )m\{0nm} E[Re(χc(w))] ≤

1−Ω(α/q2), because for any c 6= 0nm, Pr[cTw 6= 0] ≥ α and Re(χc(w)) ≤
1−Ω(1/q2) whenever cTw 6= 0. Therefore,

Pr
u∼U(Zn

q )⊗m,w∼(X ′n)m
[f({(Ui,ui + wi)}mi=1) 6= f({(Ui,ui)}mi=1))]

≥ Ω(α/q2)
1−

∣∣∣F̂ (0nm)
∣∣∣2

2
.
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Since Pru,u′∼U(Zn
q )⊗m [f({(Ui,ui)}mi=1) 6= f({(Ui,u

′
i)}mi=1))] =

1−|F̂ (0nm)|2
2

,

the lemma follows by averaging over {Ui}mi=1.

4.3 Proof of Lemma 5

Let {yi}mi=1 = {(x′′i , e′′i )}mi=1, b′′i = Aix
′′
i + e′′i and suppose Equation (3)

is not true, then together with the correctness condition, it holds that

Pr[g({(Ai,x
′
i, b
′′
i )}mi=1) = f({(Ai,x

′′
i , e
′′
i , b
′
i)}mi=1)] > 1/2 + ε,

which breaks the soundness condition because an adversary can sample
fresh {x′i}mi=1 ∼ (Xn)⊗m and compute g({(Ai,x

′
i, b
′′
i )}mi=1).

To prove Equation (4), we first show the following two claims

Claim.

Pr[f({(Ai,x
′′
i , e
′′
i , bi + wi)}mi=1) 6= g({(Ai,xi, b

′′
i )}mi=1))]

≤
√
ε · RDm

2 (X + X ′||X ).

Proof. We rely on two elementary properties of Rényi divergence: for any
two distributions X and Y and any event E, (Pr[X ∈ E])2 ≤ Pr[Y ∈
E] · RD2(X||Y ), and for any m, RD2(Xm||Y m) = (RD2(X||Y ))m .
For any fixed choice of {(Ai,x

′′
i , e
′′
i ,xi)}mi=1, let E be the event that f

disagrees with g. Then, by the properties of Rényi divergence,(
Pr[f({(Ai,x

′′
i , e
′′
i , bi + wi)}mi=1) 6= g({(Ai,xi, b

′′
i )}mi=1)]

)2
≤ Pr[f({(Ai,x

′′
i , e
′′
i , bi)}mi=1) 6= g({(Ai,xi, b

′′
i )}mi=1)] · RD2((X + X ′)⊗m||(X )⊗m)

= Pr[f({(Ai,x
′′
i , e
′′
i , bi)}mi=1) 6= g({(Ai,xi, b

′′
i )}mi=1)] ·

(
RD2(X + X ′||X )

)m
.

The desired conclusion follows by averaging over {(Ai,x
′′
i , e
′′
i ,xi)}mi=1

and the fact that for any random variable z, (E[z])2 ≤ E[z2].

Claim. RD2(X + X ′||X ) = 1 + α2γ

Proof. By the definition of RD2 and X ′,

RD2(X + X ′||X )

=
∑
a∈G

((1− α) PrX∼X [X = a] + αPrX∼X [X + 1 = a])2

PrX∼X [X = a]

= (1− α)2 + 2(1− α)α+ α2RD2(X + 1||X )

= 1 + α2(RD2(X + 1||X )− 1).

From the correctness condition, which is

Pr[f({(Ai,x
′′
i , e
′′
i , bi)}mi=1) 6= g({(Ai,xi, b

′′
i )}mi=1)] ≤ ε

and the above two claims and union bound,

Pr[f({(Ai,x
′′
i , e
′′
i , bi + wi)}mi=1) 6= f({(Ai,x

′′
i , e
′′
i , bi)}mi=1)]

≤ ε+
√
ε(1 + α2γ)m.

The Equation (4) follows from our choice of α =
√

1/mγ.
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5 Connections to other cryptographic
primitives

Thus far, our results focused on specific classes of reconciliation functions
showing that they are not powerful enough to give NIKE in our frame-
work. Extending our previous results either on the positive or negative
direction hits barriers. The positive direction, which is to propose a NIKE
protocol that avoids our impossibility results implies cryptographic con-
structions still unknown from polynomial modulus LWE. In particular,
a positive result would imply direct constructions of special structured
weak pseudorandom functions from polynomial modulus LWE. The nega-
tive direction, which is to prove a completely general impossibility result,
is ruled out if iO exists.

5.1 From iO To NIKE

Even though our results show that there are many limitations in building
practical NIKE from polynomial modulus LWE, assuming indistinguisha-
bility obfuscation (iO) constructing NIKE is, at least theoretically, pos-
sible. Therefore, unless there are breakthrough advancements that rule
out the possibility of construction iO, showing a general impossibility of
NIKE is out of range. In this section, we sketch the iO-based construc-
tion of NIKE of Boneh and Zhandry [BZ17] and explain why it can be
implemented in our framework.

Theorem 4 ([BZ17]). Assuming a secure pseudorandom generator, a
secure punctured pseudorandom function family and a secure indistin-
guishability obfuscator, there exists a secure NIKE.

Additionally to the matrix A, in this protocol the parties share the fol-
lowing obfuscated program:

Inputs: b1, b2 ∈ X , s1, s2 ∈ S
Constants: PRF
If b1 = PRG(s1), output PRF(b1, b2).
If b2 = PRG(s2), output PRF(b1, b2).
Otherwise, output ⊥.

During the protocol, the parties exchange LWE samples b1, b2, evaluate
the obfuscated program with s1 = (x1, e1) and s2 = (x2, e2) and set as
their shared key the output of the obfuscated program. The LWE samples
are computed from a function of the form GM(x, e) = Mx + e, where
M ∈ Zn×nq and x, e are sampled from a noise distribution. Directly using
the LWE assumptions, which states that the output of G is indistinguish-
able from uniform and the fact that G is expanding, we conclude that
G is a PRG. Combining this observation with the known constructions
of punctured PRFs from any one-way function, we conclude that there
exists a NIKE protocol assuming iO and polynomial modulus LWE.
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5.2 From NIKE To weak-PRFs

In this section, we show that reconciliation functions have to be weak-
pseudorandom functions. A weak-pseudorandom function (weak-PRF)
is an efficient function family that is indistinguishable from a random
function when we have access only on random evaluations of the function.
We focus on the case of boolean weak-pseudorandom functions. Formally:

Definition 8. Let λ > 0 be a security parameter. An efficient func-
tion family ensemble F = {Fλ : {0, 1}k(λ) → {0, 1}} is called weak-
pseudorandom function family if for every probabilistic polynomial-time
algorithm A:

Pr
f,x

[AOf (x) = f(x)] ≤ 1/2 + negl(λ),

where f is sampled uniformly at random from Fλ and x ∼ U({0, 1}k(λ)).
Every query to the oracle O is answered with a tuple of the form (u, f(u)),
where u ∼ U({0, 1}k(λ)). We call

∣∣Prf,x[AOf (x) = f(x)]− 1/2
∣∣ the suc-

cess probability of A.

The main theorem of this section shows that the reconciliation functions
have to be sampled from a weak-PRF family.

Theorem 5. Let λ > 0 be a security parameter and let f(A,x1, e1, b2)
and g(A,x2, e2, b1) be efficient functions such that:
– Pr[f(A,x1, e1, b2) = g(A,x2, e2, b1)] ≥ 1− negl(λ)
– For every efficient probabilistic polynomial-time algorithm D with

input (A, b1, b2):

Pr[D(A, b1, b2) = f(A,x1, e1, b2)] ≤ 1/2 + negl(λ),

then assuming the LWE assumption, the function families F = {FA,x1,e1 :
Znq → {0, 1}}, where FA,x1,e1(·) = f(A,x1, e1, ·) and G = {GA,x2,e2 :
Znq → {0, 1}}, where GA,x2,e2(·) = g(A,x2, e2, ·) are weak-PRF families.

Even though we formally prove that the reconciliation functions should
be pseudorandom with access to random evaluations of the functions,
they have to satisfy a stronger pseudorandomness property: they should
remain pseudorandom even with access to evaluations of adversarially
chosen LWE samples. Also, our result directly generalizes to the case of
multiple LWE samples. In fact, the above theorem can be extended to
show that in a NIKE protocol where the exchanged messages are indis-
tinguishable from uniform, reconciliation functions have to be sampled
from a weak-PRF function family.
Although (weak-)PRFs are equivalent to one-way function [GGM86],
the known generic constructions are highly inefficient and unstructured.
Constructions of (weak-)PRFs from LWE are only known for superpoly-
nomial modulus [BPR12,BP14] and finding a direct construction based
on polynomial modulus is a very interesting open problem in the study of
pseudorandom functions [BR17]. We emphasize that even though pseu-
dorandomness is a necessary condition for a reconciliation function and
identifies a barrier in building NIKE from LWE, it is definitely not suf-
ficient. Reconciliation functions are very structured as the computation
of the common key should be allowed in at least two ways, one for Alice
and one for Bob.
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Proof. We show that F is a weak-PRF family and the same analysis
holds for G. Assume that there exists a distinguisher A for F with success
probability α; we use A to break the soundness of the NIKE protocol.
From the correctness condition of NIKE,

Pr[FA,x1,e1(b2) = g(A,x2, e2, b1)] ≥ 1− negl(λ).

Hence, with high probability we get evaluations of FA,x1,e1 by sampling
LWE secret and noise x2, e2 and computing g(A,x2, e2, b1). Additionally,
the LWE assumption implies that these evaluations of F are computa-
tionally indistinguishable from uniform evaluations, as required by the
definition of weak-PRFs.
An adversary D that breaks the soundness condition of NIKE runs as
follows:
– Run the distinguisher A, where instead of uniform evaluations com-

pute evaluations using LWE samples and g as above.
– Use as the challenge query b2.
– Return the output of A.

Let us denote by E the event that FA,x1,e1(b2) = g(A,x2, e2, b1), the
success probability of D is equal to

Pr[D(A, b1, b2) = FA,x1,e1(b2)]

≥ Pr[D(A, b1, b2) = FA,x1,e1(b2)|E ] Pr[E ]

= Pr[A(b2) = FA,x1,e1(b2)] Pr[E ]

≥ 1/2 + α− negl(λ).

Hence if A breaks F , then D breaks the soundness condition of NIKE.
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Lov75. László Lovász. Spectra of graphs with transitive groups.

Periodica Math. Hung., 6:191–195, 1975. 10
LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On

ideal lattices and learning with errors over rings. In Ad-
vances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Monaco / French Riviera, May
30 - June 3, 2010. Proceedings, pages 1–23, 2010. 2

NAB+17. Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas,
Karen Easterbrook, Brian LaMacchia, Patrick Longa, Ilya
Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth
Raghunathan, and Douglas Stebila. Frodokem. Techni-
cal report, National Institute of Standards and Technol-
ogy, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 2

NIS. NIST. https://csrc.nist.gov/csrc/media/projects/post-
quantum-cryptography/ documents/call-for-proposals-
final-dec-2016.pdf. 2

PAA+17. Thomas Poppelmann, Erdem Alkim, Roberto Avanzi,
Joppe Bos, Leo Ducas, Antonio de la Piedra, Pe-
ter Schwabe, Douglas Stebila, Martin R. Albrecht, Em-
manuela Orsini, Valery Osheter, Kenneth G. Paterson,
Guy Peer, and Nigel P. Smart. Newhope. Techni-
cal report, National Institute of Standards and Technol-
ogy, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 2

Pei09. Chris Peikert. Public-key cryptosystems from the worst-
case shortest vector problem: extended abstract. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 -
June 2, 2009, pages 333–342, 2009. 4

20

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


Pei14. Chris Peikert. Lattice cryptography for the internet. In
Post-Quantum Cryptography - 6th International Workshop,
PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014.
Proceedings, pages 197–219, 2014. 2

Reg05. Oded Regev. On lattices, learning with errors, random lin-
ear codes, and cryptography. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Balti-
more, MD, USA, May 22-24, 2005, pages 84–93, 2005. 2,
7
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A A self-contained proof of Theorem 1

In Section 3, we use two lemmas (Lemmas 1 and 3) in order to bound
the key agreement probability by maxc∈Zq\{0} |Ee∼ξ[χc(e)]. In this sec-
tion, we give a self-contained proof for Lemma 2 without explicitly using
the notion of maximal correlation. However, this proof is essentially an
unrolling of the proof using maximal correlation.

Claim 3 For any m ≥ 1, and balanced f, g : Zmq → {0, 1}, it holds that

Pr[f(X) = g(Y )] ≤
1 + maxc∈Zq\{0} |Ee∼ξ[χc(e)]|

2

where for any z ∈ Zq, ξ(z) = Pr[xT1 e2 − eT1 x2 = z].

Combining the above claim with the fact that maxc∈Zq\{0} |Ee∼ξ[χc(e)]| ≤
1−Ω(1/q2) (see Claim 1 and 2), Theorem 1 follows.

Proof. Let F (x) = (−1)f(x) and G(x) = (−1)g(x). For any c ∈ Zmq ,

let F̂ (c) = Ex∼U(Zm
q )[F (x)χc(−x)] and Ĝ(c) = Ex∼U(Zm

q )[G(x)χc(−x)].

Note that for any x ∈ Zmq , F (x) =
∑

c∈Zm
q
F̂ (c)χc(x) and G(x) =∑

c∈Zm
q
Ĝ(c)χc(x). Observe that X is distributed uniformly and Y =

X + e.

|E[F (X)G(X + e)]|

=

∣∣∣∣∣∣
∑

c∈Zm
q \{0m}

F̂ (c)Ĝ(c)E[χc(e)]

∣∣∣∣∣∣
≤
√ ∑

c∈Zm
q \{0m}

|F̂ (c)|2
∑

c 6=0m

|Ĝ(c)|2 max
c 6=0m

|E[χc(e)]|

≤ max
c∈Zm

q \{0m}
|E[χc(e)]|

≤ max
c∈Zq\{0}

|E[χc(ei)]|,

where e = (e1, . . . , em). The first equality follows by linearity of ex-
pectation and the fact that X is uniform over Zmq . For the next in-
equality, we use triangle inequality and that |E[χc(e)]| is real, since ξ
is symmetric. The next two inequalities follow by Cauchy-Schwarz and

Parseval’s identity, which states that
∑

c

∣∣∣F̂ (c)
∣∣∣2 = E

[
|F (X)|2

]
= 1.

The desired conclusion follows from the fact that Pr[f(X) = g(Y )] =
(1 + E[F (X)G(Y )])/2.

Ring-LWE case. We get a similar result for the Ring-LWE case. Let
Rq be the ring Zq[x]/g(x) where g is a polynomial of degree n over Zq.
We identify an element in Rq by its coefficient vector in Znq . We say that
w is drawn from (Xn)∗ if its coefficients are drawn from Xn conditioned
on w being a unit of Rq.
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Theorem 6. Let n, q ≥ 1 be integers and Rq be as above. Assume that
the distribution X over Zq is symmetric and for any a ∈ Zq\{0}, Pr[az =
0] ≤ 9/10 and Pr[az = q/2] ≤ 9/10 and (Xn)∗ as above.
Let µRLWE,X (X,Y ) be the joint distribution of

X = x1 · a · x2 + x1 · e2 and Y = x1 · a · e1 + x2 · e1,

where · is polynomial multiplication, a ∼ U(Rq), e1, e2 ∼ Xn and
x1,x2 ∼ (Xn)∗. Then for any m ≥ 1, and any balanced functions
f, g : Rm → {0, 1} respect to the marginal distributions of µ⊗mRLWE,X ,
it holds that

Pr
(Xm,Y m)∼µ⊗m

RLWE,X

[f(Xm) = g(Y m)] ≤ 1−Ω(1/q2).

Proof. We proceed as in the LWE case by proving claims similar to
Claim 1, 2 and 3. For c ∈ Rq, we define χc : Rq → C as χc(x) =
e−2πi·〈c,x〉/q, where 〈c,x〉 is the inner product of the coefficient vectors
of c,x over Zq. Then, the following claims hold.

Claim 4 For any m ≥ 1 and balanced f, g : Rmq → {0, 1}, it holds that

Pr[f(Xm) = g(Y m)] ≤
1 + maxc∈Rq\{0n} |Ee∼ξ[χc(e)]|

2

where for any z ∈ Rq, ξ(z) = Pr[x1 · e2 − e1 · x2 = z].

Claim 5 |Ee∼ξ[χa(e)]| ≤ maxc∈Rq\{0n} |Ee∼Xn [χc(e)]|.

Claim 6 For any c ∈ Rq \ {0n}, |Ee∼Xn [χc(e)]| ≤ 1−Ω(1/q2).

The proofs are almost identical to the corresponding proofs of Claim 3,
2 and 1 and so we omit them.
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