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Abstract

We introduce a new technique for reducing the dimension of the ambient space of low-degree poly-
nomials in the Gaussian space while preserving their relative correlation structure. As an application,
we obtain an explicit upper bound on the dimension of an ε-optimal noise-stable Gaussian partition.
In fact, we address the more general problem of upper bounding the number of samples needed to
ε-approximate any joint distribution that can be non-interactively simulated from a correlated Gaussian
source. Our results significantly improve (from Ackermann-like to “merely” exponential) the upper
bounds recently proved on the above problems by De, Mossel & Neeman (CCC 2017, SODA 2018
resp.), and imply decidability of the larger alphabet case of the gap non-interactive simulation problem
posed by Ghazi, Kamath & Sudan (FOCS 2016).

Our technique of dimension reduction for low-degree polynomials is simple and can be seen as a
generalization of the Johnson-Lindenstrauss lemma and could be of independent interest.
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1 Introduction

1.1 Gaussian Isoperimetry & Noise Stability

Isoperimetric problems over the Gaussian space have become central in various areas of theoretical com-
puter science such as hardness of approximation and learning theory. In its simplest and classic form,
the central question in isoperimetry is to determine what is the smallest possible surface area for a body
of a given volume. Alternately, isoperimetric problems can also be formulated in terms of the notion of
Noise stability.

Fix a real number ρ ∈ [0, 1] and let f : Rn → {0, 1} denote the indicator function of a subset (say Af )
of the n-dimensional Gaussian space (Rn with the Gaussian measure γn given by the density function
dγn/dX = exp(−‖X‖22/2)/(2π)n/2). The noise stability Stabρ(f) is the probability that two ρ-correlated
Gaussians X , Y both fall inside or outside Af . More generally, the Gaussian “noise operator” Uρ (also
known as the Ornstein-Uhlenbeck operator), defined for each ρ ∈ [0, 1], acts on any f : Rn → [0, 1] as

(Uρf)(X) := E
Z∼γn

[
f
(
ρX +

√
1− ρ2 ·Z

)]
.

The noise stability is then defined as Stabρ(f) := EX∼γn [f(X) · Uρf(X) + (1− f(X)) · (1− Uρf(X))].
Reformulated in terms of noise stability, the isoperimetric problem is to determine the largest pos-

sible value of Stabρ(f) for a function f : Rn → [0, 1] with a given expectation E[f ] = µ. The seminal
isoperimetric theorem of Borell [Bor85] shows that indicator functions of halfspaces are the most noise-
stable among all functions f : Rn → [0, 1] with a given expectation over the Gaussian measure. Borell’s
theorem (along with the invariance principle [MOO05, Mos10]) has had fundamental applications in the-
oretical computer science, e.g., in the hardness of approximation for Max-Cut under the Unique Games
conjecture [KKMO07] and in voting theory [Mos10].

In this work, we are interested in analogues of Borell’s theorem for partitions of the Gaussian space
into more than two subsets, or equivalently noise stability of functions f taking values over [k] := {1, . . . , k}.
Towards stating these analogues, let’s state Borell’s theorem formally in a more general notation. Let
∆k be the probability simplex in Rk (i.e., convex hull of the basis vectors {e1, . . . , ek}). The Ornstein-
Uhlenbeck operator naturally extends to vector valued functions f : Rn → Rk as Uρf := (Uρf1, . . . , Uρfk)
where f = (f1, . . . , fk). The noise stability of functions f : Rn → ∆k is now defined as Stabρ(f) :=
EX∼γn [〈f(X), Uρf(X)〉] where 〈·, ·〉 denotes the inner product over Rk. We can similarly define the
noise stability of a function f : Rn → [k] by embedding [k] in ∆k, i.e., identifying coordinate i ∈ [k] with
the standard basis vector ei ∈ ∆k. Borell’s theorem can be formally stated in this notation as follows:

Borell’s Theorem [Bor85]. For any f : Rn → ∆2, consider the halfspace function h = (h1, h2) : Rn → ∆2

given by h1(X) = 1{〈a,X〉 ≥ b} and h2(X) = 1− h1(X), for suitable a ∈ Rn, b ∈ R such that E[f ] = E[h].
Then, Stabρ(f) ≤ Stabρ(h).

While Borell’s theorem deals with the case of k = 2, it is natural to consider the question of maximal
noise stability for k > 2, stated as follows.

Question 1. [Maximum Noise Stability (MNS)] Given a positive integer k ≥ 2 and α ∈ ∆k, what is the
maximum noise stability of a function f : Rn → ∆k satisfying E[f ] = α?

Question 1 remains open even for k = 3. In the particular case where α = ( 1
k , . . . ,

1
k ), the Standard

Simplex Conjecture posits that the maximum noise stability is achieved by a “standard simplex partition”
(this is equivalent to the Plurality is Stablest conjecture) [KKMO07, IM12]. Even in the special case when
k = 3 and α = (1

3 ,
1
3 ,

1
3), the answer is still tantalizingly open. In fact, a suprising result of [HMN16]

shows that when the αi’s are not all equal, the standard simplex partition (and any variant thereof) does
not achieve the maximum noise stability. This indicates that the case k ≥ 3 is fundamentally different
than the case of k = 2. On the positive side, if we consider 0 < ρ < ρ0(k, n) (for some ρ0(k, n) that goes
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(a)

f(x) = 1

f(x) = 2

(b)

f(x) = 1

f(x) = 2

f(x) = 3

Figure 1: (a) Borell’s Theorem: Halfspaces are most noise stable (b) Standard Simplex Partition for k = 3
conjectured to be most noise stable (also known as the “Peace Sign Conjecture”).

to 0 for large n), then the Standard Simplex Conjecture has been shown to hold [Hei12]. However, this
result is not applicable in the setting where ρ is fixed and n→∞.

The fact that we do not understand optimal partitions for k ≥ 3, led De, Mossel & Neeman [DMN17]
to ask whether the optimal partition is realized in any finite dimension. More formally:

Question 2. Given k ≥ 2, ρ ∈ (0, 1), and α ∈ ∆k, let Sn(α) be the optimal noise stability of a function
f : Rn → ∆k subject to E[f ] = α. Is there an n0 such that Sn(α) = Sn0(α) for all n ≥ n0?

Even Question 2 is open as of now! In this light, De, Mossel & Neeman [DMN17] ask whether one
can obtain an explicitly computable n0 = n0(k, ρ, ε) such that Sn0(α) ≥ Sn(α) − ε for all n ∈ N (in other
words, there exists a function f : Rn0 → ∆k that comes ε-close to achieving the optimal noise stability).
Note that the challenge is really about n0 being explicit, since some n0(k, ρ, ε) always exists, as Sn(α) is a
converging sequence as n→∞.

A natural approach to proving such an explicit bound is the idea of dimension reduction. Basically, it
suffices to obtain an n0 = n0(k, ρ, ε) such that for any n and any given function f : Rn → ∆k, there exists
a function f̃ : Rn0 → ∆k with E[f̃ ] = E[f ] and Stabρ(f̃) ≥ Stabρ(f) − ε. Instantiating f with an optimal
(or near-optimal) partition in Rn, for arbitrarily large n, then gives an ε-optimal partition f̃ in Rn0 .

Indeed, De, Mossel and Neeman follow such an approach and obtain an explicitly computable bound
on n0. To do so, they use and build on the theory of eigenregular polynomials that were previously studied
in [DS14], which in turn uses other tools such as Malliavin calculus.

In this work, we introduce fundamentally different, but more elementary techniques (elaborated on
shortly), thereby significantly improving the bound in [DMN17]. In particular, we show the following.

Theorem 1.1 (Dimension Bound on Approximately Optimal Noise-Stable Function). Given parameters
k ≥ 2, ρ ∈ [0, 1] and ε > 0, there exists an explicitly computable n0 = n0(k, ρ, ε) such that the following holds:
For any n ∈ N and f : Rn → ∆k, there exists f̃ : Rn0 → ∆k such that,

1. ‖E[f ]− E[f̃ ]‖1 ≤ ε.

2. Stabρ(f̃) ≥ Stabρ(f)− ε.

In particular, the explicit choice of n0 can be upper bounded by exp
(

poly
(
k, 1

1−ρ ,
1
ε

))
.

Remarks.
(i) In contrast to our theorem, the bound on n0 in [DMN17] has an Ackermann-type growth.
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(ii) It is a slight technicality that we get ‖E[f ] − E[f̃ ]‖1 ≤ ε instead of E[f ] = E[f̃ ] as was required.
However, it is possible to slightly modify f̃ to make E[f ] = E[f̃ ], if we allow n0 to depend on α = E[f ]
(which is the case in Question 2).

Theorem 1.1 has an immediate application to showing that approximately most-stable voting schemes
(among all low-influential voting schemes) can be computed efficiently. We refer the reader to [DMN17]
for the details of this application.

In order to prove Theorem 1.1, we in fact turn to the more general setting of non-interactive simulation.

1.2 Non-Interactive Simulation from Correlated Gaussian Sources

Consider a more general setting where instead of a single function f , we have two players, Alice and Bob,
with corresponding functions A : Rn → ∆k and B : Rn → ∆k. They apply A and B on the sequence of
random variables X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) respectively, where (X,Y ) ∼ G⊗nρ , which is
the distribution of ρ-correlated Gaussians in n dimensions, i.e. each coordinate (Xi,Yi) is independently

sampled from Gρ := N
([

0
0

]
,

[
1 ρ
ρ 1

])
. The goal is to choose A and B such that E[A] = E[B] = α, which

is a pre-specified vector in ∆k, while maximizing E(X,Y )[〈A(X), B(Y )〉]. Note that, this quantity is same
as EX∼γn [〈A(X), UρB(X)〉], and hence in the restricted setting of A = B = f this quantity is exactly the
noise stability of f .

We can interpret Alice as observing X and outputting the symbol i ∈ [k] with probability Ai(X),
similarly Bob observes Y and outputs j ∈ [k] with probability Bj(Y ). In this sense, Alice and Bob wish
to maximize their “agreement probability”, i.e., their probability of outputting the same symbol. The
dimension reduction mentioned in Theorem 1.1 generalized to this setup would require obtaining an
n0(k, ρ, ε) and a dimension reduction of A and B that approximately preserves the marginals and does
not decrease the agreement probability by more than ε.

However, in this language, it is more natural to ask for a much stronger dimension reduction that
preserves the entire joint distribution of symbols that Alice and Bob output, up to ε in total variation
distance. We denote the joint distribution of Alice and Bob’s outputs as (A(X), B(Y ))(X,Y )∼G⊗nρ , which
is interpretted as the distribution over (i, j) ∈ [k] × [k] given as Pr[Alice outputs i and Bob outputs j]
= EX,Y [Ai(X)Bj(Y )]. In the case of k = 2, such a dimension reduction follows from Borell’s theorem
with in fact n0 = 1! Our main result is indeed such a dimension reduction for all k ≥ 2.

Theorem 1.2 (NIS from correlated Gaussian source). Given parameters k ≥ 2, ρ ∈ (0, 1) and ε > 0, there
exists an explicitly computable n0 = n0(k, ρ, ε) such that the following holds:
For any n and A : Rn → ∆k and B : Rn → ∆k, there exist Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that,

dTV

(
(A(X), B(Y ))(X,Y )∼G⊗nρ , (Ã(a), B̃(b))

(a,b)∼G⊗n0ρ

)
≤ ε .

In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

1−ρ ,
1
ε

))
.

The transformation satisfies a stronger property that there exists an “oblivious” randomized transformation (with
a shared random seed) to go from A to Ã and from B to B̃, which works with probability at least 1 − ε. Since the
same transformation is applied on A and B with the same random seed, if A = B, then Ã = B̃ as well.

Theorem 1.1 follows immediately from Theorem 1.2, by simply setting A = B = f to obtain f̃ = Ã =

B̃. In fact, following up on [DMN17], De, Mossel & Neeman were able to extend their techniques to
prove Theorem 1.2 [DMN18] (again with Ackerman-type bounds on n0). To do so, they build on the
tools developed in [DMN17] along with a new smoothing argument inspired by boosting procedures in
learning theory and potential function arguments in complexity theory and additive combinatorics. As
we shall present shortly, our approach gets directly to Theorem 1.2 in a much more elementary way.
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1.3 Extension: Non-Interactive Simulation from General Discrete Sources

The Non-Interactive Simulation of Joint Distributions is quite well studied in Information Theory and more
recently in Theoretical Computer Science. Two players, Alice and Bob, observe the sequences of random
variables (x1, . . . ,xn) and (y1, . . . ,yn) respectively, where each pair (xi,yi) is independently drawn
from a known source distribution µ. The fundamental question here is to understand which other target
joint distributions ν can Alice and Bob simulate, without communicating with each other? How many
samples from µ are needed to do so, or in other words, what is the simulation rate?

The history of this problem goes back to the classical works of Gács and Körner [GK73] and Wyner
[Wyn75]. Specifically, consider the distribution Eq over {0, 1} × {0, 1}where both marginals are Ber(1/2)
and the bits identical with probability 1. Gács and Körner studied the special case of this problem corre-
sponding to the target distribution ν = Eq. They characterized the simulation rate in this case, showing
that it is equal to what is now known as the Gács-Körner common information of µ. On the other hand,
Wyner studied the special case corresponding to the source distribution µ = Eq. He characterized the
simulation rate in this case, showing that it is equal to what is now known as Wyner common information
of ν. Another particularly important work was by Witsenhausen [Wit75] who studied the case where the
target distribution ν = Gρ. In this case, he showed that the largest correlation ρ that can be simulated is
exactly the well-known “maximal correlation coeffcient”1 ρ(µ) which was first introduced by Hirschfeld
[Hir35] and Gebelein [Geb41] and then studied by Rényi [Rén59]. Witsenhausen also considered the case
where the target distribution ν = DSBSρ is a “doubly symmetric binary source”, which is a pair of ρ-
correlated bits (i.e., a pair of ±1 random variables with correlation ρ), and gave an approach to simulate
correlated bits by first simulating Gρ starting with samples from µ, and then applying half-space func-
tions to get outputs in {±1}. Starting with µ, such a approach simulates DSBSρ′ where ρ′ = 1− 2 arccos ρ(µ)

π .
Indeed, this is very similar to the rounding technique employed in Goemans-Williamson’s approxima-
tion algorithm [GW95] for MAXCUT 20 years later!

We will consider the modern formulation of the NIS question as defined in [KA16]. This formula-
tion ignores the simulation rate, and only focuses on whether simulation is even possible or not, given
infinitely many samples from µ – that is, whether the simulation rate is non-zero or not.

Definition 1.3 (Non-interactive Simulation of Joint Distributions [KA16]). Let (Z×Z, µ) and ([k]× [k], ν)
be two joint probability spaces. We say that the distribution ν can be non-interactively simulated from distri-
bution µ if there exists a sequence of functions

{
A(n) : Zn → ∆k

}
n∈N and

{
B(n) : Zn → ∆k

}
n∈N such that the

joint distribution νn = (A(n)(x), B(n)(y))(x,y)∼µ⊗n over [k]× [k] is such that lim
n→∞

dTV(νn, ν) = 0.

A central question that was left open following the work of Witsenhausen is: given distributions µ
and ν, can ν be non-interactively simulated from µ? Can this be even decided algorithmically? Even
when µ and ν are extremely simple, e.g., µ is uniform on the triples {(0, 0), (0, 1), (1, 0)} and ν is the
doubly symmetric binary souce DSBS0.49, it is open if µ can simulate ν! This problem was formalized as
a natural gap-problem in a work by a subset of the authors along with Sudan [GKS16b]. Here we state a
slightly more general version.

Problem 1.4 (GAP-NIS((Z × Z, µ),P, k, ε), cf. [GKS16b]). Given a joint probability space (Z × Z, µ), a
family of joint probability spaces P supported over [k] × [k], and an error parameter ε > 0, distinguish between
the following cases:

(i) there exists n and A : Zn → ∆k and B : Zn → ∆k, s.t. the distribution ν ′ = (A(x), B(y))(x,y)∼µ⊗n
satisfies dTV(ν ′, ν) ≤ ε for some ν ∈ P .

(ii) for all n and all A : Zn → ∆k and B : Zn → ∆k, the distribution ν ′ = (A(x), B(y))(x,y)∼µ⊗n satisfies
dTV(ν ′, ν) > 2ε for all ν ∈ P .2

1We skip this definition as it is not central to our paper. The definition can be found in e.g. [GKS16b].
2the choice of constant 2 is arbitrary. Indeed, we could replace it by any constant greater than 1.
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µ⊗n ν ∈ P ?

Figure 2: Non-Interactive Simulation, e.g., as studied in [KA16]

In prior work [GKS16b], it was shown that GAP-NIS for discrete distributions µ and ν is decidable, in
the special case where k = 2. This was done by introducing a framework, which reduced the problem to
understanding GAP-NIS for the special case where µ = Gρ. Indeed, the reason why the case of k = 2 was
easier was precisely because Borell’s theorem [Bor85] gives an exact characterization of the distributions
over [2]× [2] that can be simulated from Gρ. The lack of understanding of the distributions over [k]× [k]
that can be simulated from Gρ was suggested in [GKS16b] as a barrier for extending their result to k > 2.
With Theorem 1.2 in hand, it is possible to extend the framework in [GKS16b] of using a Regularity
Lemma and Invariance principle, to yield the following theorem (as also done in [DMN18], but with
Ackerman-type bounds).

Theorem 1.5 (NIS from Discrete Sources). Let (Z×Z, µ) be a joint probability space. Given parameters k ≥ 2
and ε > 0, there exists an explicitly computable n0 = n0(k, µ, ε) such that the following holds:
For any n and A : Zn → ∆k and B : Zn → ∆k, there exist Ã : Zn0 → ∆k and B̃ : Zn0 → ∆k such that,

dTV

(
(A(x), B(y))(x,y)∼µ⊗n , (Ã(a), B̃(b))a,b∼µ⊗n0

)
≤ ε .

In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

ε ,
1

1−ρ , log
(

1
α

)))
, where α = α(µ) is

the smallest atom in µ and ρ = ρ(µ) is the maximal correlation coefficient of µ.

The above theorem immediately suggests a brute force algorithm to decide GAP-NIS((Z×Z, µ),P, k, ε).
We do not provide details of the proof of the above theorem in this extended abstract. The interested
reader is referred to the full version of this paper [GKR17] (available online) for details.

1.4 Dimension Reduction for Polynomials over Gaussian Space

We now describe the main technique of “dimension reduction for low-degree polynomials” that we intro-
duce in this work, which could be of independent interest. We highlight that this technique is the main
contribution of this paper.

Let’s start with Theorem 1.2, and explain the main ideas behind its proof. We are given two vector-
valued functions A : Rn → ∆k and B : Rn → ∆k. We wish to reduce the dimension n of the Gaussian
space on whichA andB act while preserving the joint distribution (A(X), B(Y ))(X,Y )∼G⊗nρ over [k]×[k].
Recall that E(X,Y )∼G⊗nρ [Ai(X) · Bj(Y )] is the probability of the event [Alice outputs i and Bob outputs j].
For succinctness, we write this expectation as 〈Ai, Bj〉G⊗nρ . In order to approximately preserve the joint
distribution (A(X), B(Y ))(X,Y )∼G⊗nρ , it suffices to approximately preserve 〈Ai, Bj〉G⊗nρ for each (i, j) ∈
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[k] × [k] upto an additive ε/k2. Thus, to prove Theorem 1.2, we wish to find an explicit constant n0 =

n0(ρ, k, ε), along with functions Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that∣∣∣∣〈Ãi, B̃j〉G⊗n0ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ ε

k2
.

Achieving this directly is highly unclear, since a priori, we have no structural information about A
and B! To get around this, we show that it is possible to first apply a structural transformation on
A and B to convert them to low-degree and multilinear polynomials (see Section 2.2 for formal def-
initions). Such transformations are described in Section 4. This however creates a new problem that
the transformed A and B no longer map to ∆k. Nevertheless, we will show that after the said trans-
formation, we still have that the outputs of A and B are close to ∆k in expected `22 distance, that is,
dist(A,∆k) := (EX ‖R(A(X)) − A(X)‖22)1/2 is small (where R : Rk → ∆k denotes the rounding operator
that maps any v ∈ Rk to its closest point in ∆k). This will ensure that rounding the outputs of A and B
to ∆k will approximately preserve the correlations 〈Ai, Bj〉G⊗nρ .

We are now able to revise our objective as follows: Given two (vector-valued) degree-d polynomials
A : Rn → Rk and B : Rn → Rk, does there exist an explicit function n0 = n0(k, d, δ), along with polyno-
mials Ã : Rn0 → Rk and B̃ : Rn0 → Rk that δ-approximately preserve (i) the correlation 〈Ai, Bj〉G⊗nρ for
all (i, j) ∈ [k]× [k] and (ii) closeness of the outputs of A and B to ∆k, that is, dist(A,∆k) and dist(B,∆k).

We introduce a very simple and natural dimension-reduction procedure for low-degree multilinear
polynomials over Gaussian space. Specifically, for M that is a randomly sampled n × n0 matrix with
i.i.d. standard Gaussian entries, we set

Ã(a) := A

(
Ma∥∥a∥∥

2

)
and B̃(b) := B

(
Mb∥∥b∥∥

2

)
for a, b ∈ Rn0 r {0} . (1)

We leave Ã and B̃ undefined on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero set under γn.
Our main dimension-reduction theorem for polynomials is stated as follows.

Theorem 1.6 (Dimension Reduction Over Gaussian Space). Given parameters k ≥ 2, d ∈ Z≥0, ρ ∈ (0, 1)
and δ > 0, there exists an explicitly computable n0 = n0(d, k, δ) such that the following holds:

Let A : Rn → Rk and B : Rn → Rk be degree-d multilinear polynomials. Additionally, suppose that
dist(A,∆k), dist(B,∆k) ≤ δ. Consider the functions Ã : Rn0 → Rk and B̃ : Rn0 → Rk as defined in
Equation (1). With probability at least 1−O(δ) over the choice ofM ∼ γ⊗(n×n0)

1 , the following holds:

1. For every i, j ∈ [k] :
∣∣∣∣〈Ai, Bj〉G⊗nρ −

〈
Ãi, B̃j

〉
G⊗n0ρ

∣∣∣∣ ≤ δ.

2. dist(Ã,∆k) ≤
√
δ and dist(B̃,∆k) ≤

√
δ.

In particular, the explicit choice of n0 is upper bounded as exp
(
poly

(
d, log k, log(1

δ )
))

.

It is clear from the construction of Ã and B̃ that this theorem is giving us an “oblivious” randomized
transformation, as also remarked in Theorem 1.2. The proof of Theorem 1.6 is obtained by combining
Theorem 3.1 and Proposition 3.2 in Section 3.

Proof outline and analogy with the Johnson-Lindenstrauss lemma. We will now highlight a few par-
allels between our proof of Theorem 1.6 and the proof of the Johnson-Lindenstrauss (JL) lemma (cf.
[JL84, DG03]), which has been extremely influential in computer science with numerous applications
including compressed sensing, manifold learning, unsupervised learning and graph embedding.

Suppose that we have two unit vectors u, v ∈ Rn. We wish to obtain a randomized transformation
Ψs : Rn → Rn0 (for some random seed s) that approximately preserves the inner product, that is,
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〈Ψs(u),Ψs(v)〉 ≈δ 〈u, v〉 holds with probability 1− δ, over the randomness of seed s; note that here 〈·, ·〉
denotes the inner product over Rn and Rn0 respectively. Indeed, there is such a transformation, namely,
ΨM (u) = M ·u√

n0
whereM ∼ γ⊗n0×n

1 . Let F (M) = 〈ΨM (u),ΨM (v)〉. Such a transformation satisfies,

E
M

[F (M)] = 〈u, v〉 and Var
M

(F (M)) =
〈u, v〉2 + ‖u‖22‖v‖22

n0
≤ 2

n0
,

where we use that u and v are unit vectors. Thus, if we choose n0 = 2/δ3, then we can make the variance
smaller than δ3. Thereby, using Chebyshev’s inequality, we get that with probability at least 1 − δ, the
inner product 〈u, v〉 is preserved, that is, | 〈ΨM (u),ΨM (v)〉 − 〈u, v〉 | ≤ δ. Thus, we have a oblivious
randomized dimension reduction that reduces the dimension of any pair of unit vectors to O(1/δ3),
independent of n. Note that, instead of using Chebyshev’s inequality, we could use a much sharper
concentration bound to show that n0 = O(1/ε2 log(1/δ)) suffices to preserve the inner product up to an
additive ε, with probability 1 − δ. However, we described the Chebyshev’s inequality version as this is
similar to our proof of Theorem 1.6.

The problem we are facing, although morally similar, is technically entirely different. For simplicity,
let’s first consider the task of reducing the dimension of the domain of a single pair of polynomials A :
Rn → R and B : Rn → R. And for the moment, consider the transformation such that ΨMA : Rn0 → R
is given by A(Ma/

√
n0). Similarly, ΨMB(b) = B(Mb/

√
n0). Our proof of Theorem 1.6 proceeds along

similar lines as the above proof of the JL Lemma, that is, by considering F (M) = 〈ΨMA,ΨMB〉G⊗n0ρ
,

and proving bounds on EM [F (M)] and Var(F (M)). This turns out to be quite delicate! Unlike the JL
case, we don’t even have EM [F (M)] = 〈A,B〉G⊗nρ . What we do show however is that,∣∣∣EM [F (M)] − 〈A,B〉G⊗nρ

∣∣∣ ≤ on0(1) and Var
M

(F (M)) ≤ on0(1) ,

that is, both are converging to 0 at an explict rate determined by n0 (with some dependence on the degree
d of A and B). Interestingly however, in the case of d = 1, it turns out that F (M) is in fact an unbiased
estimator of 〈A,B〉G⊗nρ . Indeed, this is not a coincidence! We leave it to the interested reader to figure out
that in the case of d = 1, our tranformation is in fact identical to the above described JL transformation
on the n-dimensional space of Hermite coefficients of A and B.

Our actual transformation is slightly different, namely ΨMA(a) = A(Ma/‖a‖2). This is to ensure
Item 2, about preserving the closeness of the output ofA to ∆k. The proof gets a little more technical due
to this change, but is intuitively similar to the above transformation since ‖a‖2 is tightly concentrated
around

√
n0. It is important to note that Item 2 is quite critical to the entire approach. If it were not

for this restriction, Item 1 is very easy to satisfy on its own by other more direct dimension reduction
operations on the Hermite coefficients.

The mean and variance bounds on F (M) are presented as Lemma 3.3. This is the most technical
part of this work, but we stress that the main ideas are conceptually simple and elementary (for the most
part). We provide a brief sketch of the proof in Section 3.1 that illustrates all the main ideas in under a
page, and defer all details to Appendix A. To prove these mean and variance bounds, we first analyze
the case when A and B are multi-linear monomials (Appendix A.2) and then combine these monomial
calculations to obtain bounds for general multilinear polynomials (Appendix A.3).

1.5 Comparisons with recent works of De, Mossel & Neeman

Our main theorems Theorems 1.1, 1.2 and 1.5 significantly improve the bounds in the versions proved
by De, Mossel & Neeman [DMN17, DMN18]. Our work was inspired by [DMN17, DMN18] through
several high-level ideas, such as the use of the transformation to low-degree and multilinear polynomials
(although these tranformations are technically different in our case). However, it seems that the key
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insight into “why dimension reduction is possible” provided by the works of De Mossel & Neeman and the
current work are fundamentally different.

The key insight for dimension reduction in the work of De, Mossel & Neeman is (quoting [DMN17]):
“the fact that a collection of homogeneous polynomials can be replaced by polynomials in bounded dimensions is a
tensor analogue of the fact that for any k vectors in Rn, there exist k vectors in Rk with the same matrix of inner
products”. By contrast, the main intuition in our work is an “oblivious” dimension reduction technique,
very similar to the Johnson-Lindenstrauss Lemma, as described in Section 1.4.

Also, we point out a minor difference in our versions of Theorem 1.1. In [DMN17] the function f̃

maps to [k], while in our theorem f̃ maps to ∆k. Interestingly however, this is not a major difference and
it follows from a thresholding lemma in [DMN17, Lemma 15 & 16] that any such f̃ can be modified to
have range [k], while preserving E[f̃ ] without decreasing the noise stability.

1.6 Other Related Work and Future Directions

Information Theory. Several previous works in information theory and theoretical computer science
study “non-interactive simulation” type of questions. For instance, the non-interactive simulation of
joint distributions question studied in this work is a generalization of the “non-interactive correlation
distillation” problem3 which was studied by [MO04, MOR+06]. Moreover, recent works in the informa-
tion theory community [KA16, BG15] derive analytical tools (based on hypercontractivity and the so-
called strong data processing constant) to prove impossibility results for NIS. While these results provide
stronger bounds for some sources, they are not tight in general. Finally, the “non-interactive agreement
distillation” problem studied by [BM11] can also be viewed as a particular case of the NIS setup.

Randomness in Computation. As discussed in [GKS16b], one motivation for studying NIS problems
stems from the study of the role of randomness in distributed computing. Specifically, recent works
in cryptography [AC93, AC98, BS94, CN00, Mau93, RW05], quantum computing [Nie99, CDS08, DB14]
and communication complexity [BGI14, CGMS14, GKS16a, GJ18] study how the ability to solve various
computational tasks gets affected by weakening the source of shared randomness. In this context, it is
very natural to ask how well can a source of randomness be transformed into another (more structured)
one, which is precisely the setup of non-interactive simulation.

The classic Newman’s theorem [New91] tells us that any communication protocol with n-bit inputs
and 0-1 outputs can be simulated with only O(log n) bits of randomness. On the other hand, if we
consider the setting where Alice and Bob run a communication protocol with correlated randomness,
such as those defined in [BGI14, CGMS14], then we currently don’t know any analog of Newman’s the-
orem, i.e. starting with a protocol using unbounded amount of (correlated) randomness, we don’t know
how to reduce the amount of randomness used. Theorem 1.5 implies randomness reduction for zero-
communication or even simultaneous message protocols, and hence can be seen as a first step towards
understanding the randomness requirements of arbitrary (one or two way) communication protocols
with access to correlated randomness.

Tensor Power problems. Another motivation comes from the fact that NIS belongs to the class of ten-
sor power problems, which have been very challenging to analyze. In such questions, the goal is to
understand how some combinatorial quantity behaves in terms of the dimensionality of the problem as
the dimension tends to infinity. A famous instance of such problems is the Shannon capacity of a graph
[Sha56, Lov79] where the aim is to understand how the independence number of the power of a graph
behaves in terms of the exponent. The question of showing the computability of the Shannon capac-
ity remains open to this day [AL06]. Other examples of such open problems (which are more closely
related to NIS) arise in the problems of local state transformation of quantum entanglement [Bei12, DB13],
the problem of computing the entangled value of a 2-prover 1-round game (see for, e.g., [KKM+11] and also

3which considered the problem of maximizing agreement on a single bit, in various multi-party settings.
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the open problems [ope]). Another example is the problem of computing the amortized value of parallel
repetitions of a 2-prover 1-round game [Raz98, Hol09, Rao11, Raz11, BHH+08]. While we don’t have com-
putability results for the amortized value, there has been a recent work that tries to characterize it in
terms of an information theoretic quantity [BK18]. Yet another example of a tensor-power problem is
the task of computing the amortized communication complexity of a communication problem. Braverman-Rao
[BR11] showed that this equals the information complexity of the communication problem, however the
computability of information complexity was shown only recently [BS15].

We hope that the recent progress on the Non-Interactive Simulation problem would stimulate progress
on these other notable tensor-power problems. A concrete question is whether the techniques used for
NIS (regularity lemma, invariance principle, etc.) can be translated to any of the above mentioned setups.

Deterministic Approximate Counting. We also point out that the notions of eigenregularity used
in [DMN17, DMN18] were originally introduced and used in [DS14] to give the only known fixed-
polynomial time deterministic approximate counting algorithm for polynomial threshold functions (PTFs).
Our randomized techniques don’t seem directly applicable to the PTF counting problem, as the empha-
sis there is on being deterministic. However, it will be interesting if our techniques could yield some
further insights into approximate counting problems.

1.7 Organization of the Paper

In Section 2, we summarize some useful definitions and provide a simple lemma that will be useful later.
In Section 3, we state our main technique of dimension reduction for polynomials (Theorem 1.6) and
provide a brief sketch of the proof, with most details deferred to Appendix A. In Section 4, we describe
the transformations to make functions low-degree and multilinear, with proofs deferred to Appendix B.
Finally, in Section 5, we prove Theorem 1.2 (which implies Theorem 1.1 as a corollary).

2 Preliminaries

2.1 Gaussian Probability Spaces

Throughout this paper, we deal with the n-dimensional Gaussian space, i.e. Rn equipped with Gaussian
measure γn given by the density function

dγn
dX

:=
1

(2π)n/2
· exp

(
−1

2
· ‖X‖2Rn

)
.

where ‖ · ‖Rn denotes the `2 norm of a vector. We use letters such as X , Y to denote points in Rn,
bold symbols such as X , Y to denote random variables, subscripts such as Xi or Xi denote the i-th
coordinate.

The `2-norm of a function f : Rn → R is defined as ‖f‖2 :=

[
E

X∼γn
f(X)2

]1/2

. We use L2(Rn, γn) to

denote the space of all `2-integrable functions f : Rn → R, i.e. ‖f‖2 <∞. All functions we consider will
be `2-integrable. The inner product of f, g ∈ L2(Rn, γn) is defined as 〈f, g〉γn := EX∼γn [f(X)g(Y )].

The joint distribution of ρ-correlated Gaussians is denoted as Gρ, which is a 2-dimensional Gaussian
distribution (X,Y ), where X and Y are marginally distributed according to γ1, with E[XY ] = ρ. For
A,B ∈ L2(Rn, γn), the noisy correlation between A and B over G⊗nρ is defined as,

〈A,B〉G⊗nρ := E
(X,Y )∼G⊗nρ

[A(X) ·B(Y )]

Finally, the total variation distance between two distributions µ and ν over domain Ω is defined as,

dTV(µ, ν) := sup
S⊆Ω

∣∣µ(S)− ν(S)
∣∣ .
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2.2 Hermite Analysis

The set of Hermite polynomials {Hr : R→ R : r ∈ Z≥0} form an orthonormal basis for functions in
L2(R, γ1) with respect to the inner product 〈·, ·〉γ1 . The r-th Hermite polynomialHr : R→ R (for r ∈ Z≥0)
is defined as,

H0(x) = 1; H1(x) = x; Hr(x) =
(−1)r√
r!

ex
2/2 · d

r

dxr
e−x

2/2 .

Hermite polynomials can also be obtained via the generating function, ext−
t2

2 =
∑∞

r=0
Hr(x)√

r!
· tr.

For any σ = (σ1, . . . , σn) ∈ Zn≥0, define Hσ : Rn → R as Hσ(X) =
∏n
i=1Hσi(Xi). It easily follows

that the set
{
Hσ : σ ∈ Zn≥0

}
forms an orthonormal basis for L2(Rn, γn). Thus, every A ∈ L2(Rn, γn) has

a Hermite expansion given by A(X) =
∑

σ∈Zn≥0
Â(σ) ·Hσ(X), where the Â(σ)’s are the Hermite coefficients

of A obtained as Â(σ) = 〈A,Hσ〉γn . The degree of σ is defined as |σ| :=
∑

i∈[n] σi, and the degree of A is

the largest |σ| for which Â(σ) 6= 0. We say that A ∈ L2(Rn, γn) is multilinear if Â(σ) is non-zero only if
σi ∈ {0, 1} for all i ∈ [n].

We list several useful facts about Hermite coefficients:
(1) Parseval’s identity:

∥∥A∥∥2

2
=
∑

σ∈Zn≥0
Â(σ)2 and Var(A) =

∑
0 6=σ∈Zn≥0

Â(σ)2.

(2) Plancherel’s identity: 〈A,A′〉γn =
∑

σ∈Zn≥0
Â(σ)Â′(σ).

(3) Ornstein-Uhlenbeck operator: UρA(X) =
∑

σ∈Zn≥0
ρ|σ| · Â(σ) ·Hσ(X).

(4) Noisy Correlation: 〈A,B〉G⊗nρ = 〈A,UρB〉γn =
∑

σ∈Zn≥0
ρ|σ|Â(σ)B̂(σ)

For convenience, Uρ(X) denotes the distribution (ρX +
√

1− ρ2Z) where Z ∼ γn, for any X ∈ Rn.

2.3 Vector-valued functions

For any functionA : Rn → Rk, we will interpretA as a vector of functions (A1, · · · , Ak), whereAi : Rn →
R is the i-th coordinate of the output ofA. The definitions of Hermite analysis extend naturally to vector-
valued functions as follows. For A : Rn → Rk, the Hermite coefficient Â(σ) is

(
Â1(σ), . . . , Âk(σ)

)
∈ Rk.

We can extend the definition of `2-norm as ‖A‖2 := EX∼γn ‖A(X)‖2 or equivalently ‖A1‖2+· · ·+‖Ak‖2 =∑
σ∈Zn≥0

‖Â(σ)‖2. Also, deg(A) := maxi∈[k] deg(Ai). Again, all the vector-valued functions with domain

Rn that we consider will be such that the function in each coordinate is in L2(Rn, γn).
For k ∈ N and i ∈ [k], let ei be the unit vector along coordinate i in Rk. The simplex ∆k is defined

as the convex hull formed by {ei : i ∈ [k]}. Equivalently, ∆k =
{
v ∈ Rk : ‖v‖1 = 1

}
is the set of proba-

bility distributions over [k]. While we will consider vector-valued functions mapping to Rk, we will be
primarily interested in functions which map to ∆k. The rounding operator R(k) : Rk → ∆k maps any
v ∈ Rk to its closest point in ∆k. In particular, it is the identity map on ∆k. We will drop the superscript
onR, as k is fixed throughout this paper. Similar to our notation for vector-valued functions,Ri denotes
the i-th coordinate of R. Thus, while the i-th coordinate of A is denoted by Ai, the i-th coordinate of
R(A) is denoted byRi(A).

As mentioned already, an important relaxation in our work is to consider functions that do not map
to ∆k, but instead map to Rk. For such functions to be meaningful, we will require that the outputs are
usually close to ∆k, in which case, we will be rounding them to the simplex ∆k. Towards this end, fhe
following simple proposition will be very useful, which says that if we modify the strategies of Alice and
Bob slightly (in `2-distance), then the correlation between the strategies does not change significantly.
The proof follows by a simple triangle inequality and the Cauchy-Schwarz inequality.
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Proposition 2.1 (Close strategies, have similar correlations). Let A, Ã,B, B̃ ∈ L2(Rn, γn) such that ‖A‖2,
‖Ã‖2, ‖B‖2, ‖B̃‖2 ≤ 1. If ‖A− Ã‖2 ≤ ε and ‖B − B̃‖2 ≤ ε, then it holds that,∣∣∣∣〈Ã, B̃〉G⊗nρ − 〈A,B〉G⊗nρ

∣∣∣∣ ≤ 2ε

3 Dimension Reduction for Low-Degree Multilinear Polynomials

In this section, we present our main technique of dimension reduction for low-degree multilinear poly-
nomials over Gaussian space. Theorem 1.6 is obtained immediately as a combination of Theorem 3.1
and Proposition 3.2 stated below.

Theorem 3.1. Given d ∈ Z>0, ρ ∈ [0, 1] and δ > 0, there exists an explicitly computable n0 = n0(d, δ), such
that the following holds:
Let A : Rn → R and B : Rn → R be degree-d multilinear polynomials, such that

∥∥A∥∥
2
,
∥∥B∥∥

2
≤ 1.

ForM ∈ Rn×n0 with entries i.i.d. sampled from γ1, define the functions4 AM : Rn0 → R and BM : Rn0 → R as

AM (a) = A

(
Ma∥∥a∥∥

2

)
and BM (b) = B

(
Mb∥∥b∥∥

2

)
for a, b ∈ Rn0 r {0} .

Then, with probability at least 1− δ (over the choice ofM ), it holds that,∣∣∣〈AM , BM 〉G⊗n0ρ
− 〈A,B〉G⊗nρ

∣∣∣ < δ .

In particular, the explicit choice of n0 is upper bounded as dO(d)

δ4
.

In other words, for a typical choice of M ∼ γ⊗(n×n0)
1 , the correlation between A and B is approximately

preserved if we replace (X,Y ) ∼ G⊗nρ by (Ma/
∥∥a∥∥

2
,Mb/

∥∥b∥∥
2
), where (a, b) ∼ G⊗n0

ρ . Intuitively, M
can be thought of as a means to “stretch” n0 coordinates of Gρ into effectively n coordinates of Gρ, while
“fooling” correlations between degree-d multilinear polynomials.

Before we prove the above theorem, we prove a simple proposition that completely handles Item 2 of
Theorem 1.6 by showing that if this dimension reduction were applied to vector-valued functions whose
outputs lie close to the simplex ∆k, then with high probability, even the dimension-reduced functions
will have outputs close to the simplex. More formally,

Proposition 3.2. Let A : Rn → Rk and B : Rn → Rk, such that
∥∥R(A)−A

∥∥
2
,
∥∥R(B)−B

∥∥
2
≤ δ. Then,

with probability at least 1− 2δ (over choice ofM ), it holds that,∥∥R(AM )−AM

∥∥
2
≤
√
δ and

∥∥R(BM )−BM

∥∥
2
≤
√
δ .

Proof. Observe that even for a fixed non-zero a ∈ Rn0 , the distribution of Ma
‖a‖2 is identical to that of a

standard n-variate Gaussian distribution γn. Thus, we immediately have that,

E
M

E
a

∥∥∥R(A(Ma
‖a‖2

))
−A

(
Ma
‖a‖2

)∥∥∥2

2
= E

X

∥∥R (A (X))−A (X)
∥∥2

2

Alternately, E
M

∥∥R(AM )−AM

∥∥2

2
=
∥∥R(A)−A

∥∥2

2
≤ δ2

Thus, by Markov’s inequality,
∥∥R(AM )−AM

∥∥
2
≤
√
δ holds with probability at least 1 − δ. We can

similarly argue for BM , and a union bound completes the proof.

4we leave AM and BM undefined on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero set under γn.
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To prove Theorem 3.1, we primarily use the second moment method (i.e., Chebyshev’s inequality). In
particular, let F (M) be defined as,

F (M)
def
= 〈AM , BM 〉G⊗n0ρ

The most technical part of this work is to show sufficently good bounds on the mean and variance of
F (M) for a random choice ofM ∼ γ⊗(n×n0)

1 , given by the following lemma.

Lemma 3.3. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable n0 := n0(d, δ)

such that forM ∼ γ⊗(n×n0)
1 ,∣∣∣E

M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2
.

We provide a little sketch of the proof of Lemma 3.3 below, with the full details in Appendix A. Assuming
Lemma 3.3, we can easily prove Theorem 3.1.

Proof of Theorem 3.1. We invoke Lemma 3.3 with parameters d and δ2/2, to get a choice of n0 = dO(d)

δ4
.

Using Chebyshev’s inequality and the Variance bound in Lemma 3.3, we have that for any η > 0,

Pr
M

[∣∣F (M)− EM F (M)
∣∣ > η

]
≤ δ2

2η
.

Using the triangle inequality, and the Mean bound in Lemma 3.3, we get

Pr
M

[∣∣∣F (M)− 〈A,B〉G⊗nρ
∣∣∣ > δ

]
≤ Pr

M

[∣∣F (M)− EM F (M)
∣∣+
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣ > δ
]

≤ Pr
M

[∣∣F (M)− EM F (M)
∣∣ > δ − δ2

]
≤ δ.

3.1 Proof Sketch of Lemma 3.3

While the proof of Lemma 3.3 is somewhat technical as a whole, the main driver of the entire lemma is
a simple combinatorial fact that if we sample d times with replacement from a bag with n0 items, then
the probability of not sampling distinct items is at most O(d2/n0) = on0(1). We briefly illustrate this
idea at play by proving a simpler version of the mean bound. For this section, let’s consider a different
dimension reduction of setting AM and BM as, AM (a) = A(Ma/

√
n0) and BM (b) = B(Mb/

√
n0),

whereM ∼ γ⊗(n×n0)
1 . Letmi ∈ Rn0 denote the vector corresponding to the i-th row ofM . Consider the

mean of F (M) = 〈AM , BM 〉G⊗n0ρ
:

E
M
F (M) = E

M
E
a,b

A

(
Ma
√
n0

)
B

(
Mb
√
n0

)
= E

M
E
a,b

∑
σ,κ

Â(σ)B̂(κ)

n
(|σ|+|κ|)/2
0

·
∏

i :σi=1

〈mi,a〉 ·
∏

j :κj=1

〈mj , b〉

where, recall that A and B are multilinear, and so the relevant σ and κ are in {0, 1}n, with |σ|, |κ| ≤ d.
Next, observe that Emim

T
i = In0×n0 , and hence we get that,

E
M

∏
i :σi=1

〈mi,a〉 ·
∏

j :κj=1

〈mj , b〉 =

{
〈a, b〉|σ| if σ = κ

0 if σ 6= κ
.
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Finally, we observe that if we expand 〈a, b〉d as
∑

i1,...,id∈[n0] ai1bi1 . . .aidbid , then from the combinatorial
fact above, except for a O(d2) · nd−1

0 out of total nd0 terms, the indices i1, . . . , id are all distinct. It is
immediate to see that if all the ij ’s are distinct then Ea,b ai1bi1 . . .aidbid = ρd. Additionally, we show that
if the ij ’s are not all distinct then |Ea,b ai1bi1 . . .aidbid | ≤ dO(d) (this follows from the fact that for the d-th
moments of γ1 are at most dO(d)). Putting this together we get for any σ (with |σ| ≤ d) that,

E
a,b

〈a, b〉|σ|

n
|σ|
0

= ρ|σ| ± dO(d)

n0

Putting everything together we get,

E
M
F (M) =

∑
σ

Â(σ)B̂(σ) ·

(
ρ|σ| ± dO(d)

n0

)
= 〈A,B〉G⊗nρ ±

∑
σ

Â(σ)B̂(σ) · d
O(d)

n0

And hence,∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣ ≤ dO(d)

n0
·
∑
σ

Â(σ)B̂(σ) ≤ dO(d)

n0
· ‖A‖2 · ‖B‖2 ≤ δ,

where we use the Cauchy-Schwarz inequality and that n0 ≥ dO(d)/δ. This completes a proof sketch of
the mean bound in Lemma 3.3. Replacing

√
n0 by ‖a‖2 introduces a minor technicality, but still works

because ‖a‖2 is tightly concentrated around
√
n0. The variance bound is slightly more complicated with

the use of a hypercontractive inequality instead of Cauchy-Schwarz. The full details of the proof are in
Appendix A.

4 Transformation to Low-Degree Multilinear Polynomials

While Theorem 1.6 applies only for low-degree multilinear polynomials, we can extend it for all func-
tions by using the following lemma that transforms k-dimensional `2-integrable functions A : Rn → Rk
and B : Rn → Rk into low-degree multilinear polynomials while approximately preserving all corre-
lations and also not deviating much from the simplex ∆k (although slightly increasing the number of
variables).

Lemma 4.1 (Low-Degree Multilinear Transformation). Given parameters ρ ∈ [0, 1], δ > 0, k ∈ N, there
exists an explicit d = d(k, ρ, δ) and t := t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, such that, for any i ∈ [k], it holds that Var(Ai),Var(Bi) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following statements hold.

1. Ã and B̃ are multilinear with degree at most d.

2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.

3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2

+ δ and
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2

+ δ

4. For every i, j ∈ [k], ∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
and t = O

(
kd2

δ2

)
.
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A B Rn → ∆k

Low-Degree &
Multilinear transform

Lemma 4.1 Lemma 4.1

A(1) B(1) Rnt → Rk

Dimension
Reduction

Theorem 3.1
(using random seed M )

A(2) B(2) Rn0 → Rk

Rounding Proposition 2.1 Proposition 2.1

Ã B̃ Rn0 → ∆k

Figure 3: Transformations for Non-interactive simulation from Correlated Gaussian Sources

This lemma is itself proved in two stages. The first stage transforms general functions to low-degree
polynomials by applying a small noise operator (making the functions have “decaying Hermite tails”)
followed by truncation of the higher degree terms. The second stage transforms low-degree polynomials
into multilinear ones, by replacing each variable by a normalized sum of new variables (making the
functions have low mass on non-multilinear terms) followed by truncation of the non-multilinear terms.

These techniques are quite standard in literature. For the use of noise operator in the first stage see
e.g. [MOO05, Mos10]. For the substitution of variables in the second stage see e.g. [DMN17]. However,
since we are stating particular quantitative versions of the lemmas, we provide the proofs in Appendix B
for completeness.

5 Non-Interactive Simulation from Correlated Gaussian Sources

In this section, we complete the proof of our main theorem regarding non-interactive simulation from
correlated Gaussian sources, i.e. Theorem 1.2. Recall that it immediately implies Theorem 1.1 by setting
A = B = f and obtaining f̃ = Ã = B̃.

Proof of Theorem 1.2. Starting with functions A : Rn → ∆k and B : Rn → ∆k, we first apply Lemma 4.1
to transform A and B to low-degree and multilinear polynomials, and subsequently apply Theorem 3.1.
Unfortunately after these transformations, the range is no longer restricted to ∆k. Nevertheless, we do
have that these transformations ensure that the functions still output something “close” to the simplex
∆k. This allows us to apply the rounding operator and get the range as ∆k again (using Proposition 2.1).
An overview of the transformations done is presented in Figure 3.

We thus transformA andB through each of the following steps. At each step, we approximately pre-
serve the correlation 〈Ai, Bj〉 for every i, j ∈ [k]. Additionally, in each step

∥∥R(A)−A
∥∥

2
and

∥∥R(B)−B
∥∥

2
doesn’t increase significantly (note that, to begin with, the range of A and B is ∆k and hence we start
with

∥∥R(A)−A
∥∥

2
=
∥∥R(B)−B

∥∥
2

= 0).

1. Transformation to Low-Degree & Multilinear: We apply Lemma 4.1 on A and B with parameter
δ (chosen later), setting d = d(ρ, k, δ) and t = t(d, k, δ) as required, to get degree-d and multilinear
A(1) : Rn → Rk and B(1) : Rn → Rk. Moreover, we have that for every i, j ∈ [k],∣∣∣∣〈A(1)

i , B
(1)
j

〉
G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ (2)

14



Additionally, we have that
∥∥R(A(1))−A(1)

∥∥
2
≤
∥∥R(A)−A

∥∥
2

+ δ ≤ δ and similarly for B(1).

2. Dimension reduction: We apply Theorem 3.1 with parameter δ/k2, setting n0 = n0(d, ρ, δ/k2)
as required, on individual coordinates of A(1) and B(1) to obtain functions A(2) : Rn0 → Rk and
B(2) : Rn0 → Rk. Taking a union bound, we have that with probability at least 1 − δ, it holds for
every i, j ∈ [k] that, ∣∣∣∣〈A(2)

i , B
(2)
j

〉
G⊗n0ρ

−
〈
A

(1)
i , B

(1)
j

〉
G⊗ntρ

∣∣∣∣ ≤ δ (3)

From Proposition 3.2, we have that with probability 1− 4δ,∥∥R(A(2))−A(2)
∥∥

2
≤
√∥∥R(A(1))−A(1)

∥∥
2
≤
√
δ

∥∥R(B(2))−B(2)
∥∥

2
≤
√∥∥R(B(1))−B(1)

∥∥
2
≤
√
δ

Note that this is the only randomized step in the entire transformation, and it succeeds in obtaining
the above three statements with probability at least 1− 5δ.

3. Rounding to ∆k: Finally, we set Ã = R(A(2)) and B̃ = R(B(2)). Thus, assuming the previous
step succeeds, we have that ‖Ãi − A

(2)
i ‖2 ≤

√
δ and ‖B̃j − B

(2)
j ‖2 ≤

√
δ. Hence we can invoke

Proposition 2.1, to conclude that,∣∣∣∣〈Ãi, B̃j〉G⊗n0ρ

−
〈
A

(2)
i , B

(2)
j

〉
G⊗n0ρ

∣∣∣∣ ≤ 2
√
δ. (4)

Thus we started with functions A : Rn → ∆k and B : Rn → ∆k and ended with functions Ã : Rn0 → ∆k

and B̃ : Rn0 → ∆k such that for every i, j ∈ [k] (by combining Equations (2) to (4)) it holds that,∣∣∣∣〈Ãi, B̃j〉G⊗n0ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ O(
√
δ)

Thus, more strongly, if we instantiate δ = O(ε2/k4), then we get that our entire transformation succeeds
with probability 1− ε in obtaining Ã and B̃ such that,

dTV

(
(A(X), B(Y ))(X,Y )∼G⊗nρ , (Ã(a), B̃(b))

(a,b)∼G⊗n0ρ

)
≤ ε .

It is easy to see that n0 works out to be

n0 =
dO(d)

δ4
= exp

(
Õ

(
k4.5

ε2(1− ρ)

))
= exp

(
poly

(
k,

1

ε
,

1

1− ρ

))
.
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A Proofs of Mean and Variance Bounds in Dimension Reduction

In this section, we provide the proof of Lemma 3.3. This is the main new technical component introduced
in this paper. Even though the calculations might seem cumbersome, they involve mostly elementary
steps. To understand the high level picture, we recommend the reader to go through a short proof sketch
presented in Section 3.1.

Recall that starting with degree d multilinear polynomials A : Rn → R and B : Rn → R, we defined
functions AM : Rn0 → R and BM : Rn0 → R, forM ∼ γ⊗(n×n0)

1 , as

AM (a) = A

(
Ma∥∥a∥∥

2

)
and BM (b) = B

(
Mb∥∥b∥∥

2

)
for a, b ∈ Rn0 r {0} .

and we defined their correlation as F (M)
def
= 〈AM , BM 〉G⊗n0ρ

. Lemma 3.3 proves bounds on the mean
and variance of F (M), which we restate below for convenience.

Lemma 3.3. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable n0 := n0(d, δ)

such that forM ∼ γ⊗(n×n0)
1 ,∣∣∣E

M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2
.

We break down the full proof into the following three modular steps.

1. In Appendix A.1, we prove a meta-lemma (Lemma A.1) that will help us prove both the mean and
variance bounds; indeed this meta-lemma is at the heart of why Theorem 3.1 holds. Morally, this
lemma says that if we have an expectation of a product of a small number of inner products of
normalized correlated Gaussian vectors, then, we can exchange the product and the expectations
while incurring only a small additive error. Lemma A.1 is the main take away from this section,
and the reader may skip to Appendices A.2 and A.3 to see the rest of the proof.
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2. In Appendix A.2, we prove bounds on the mean and co-variances of degree-d multilinear mono-
mials, under the above transformation of replacing X,Y ∈ Rn (inputs to A and B) by Ma

‖a‖2 and
Mb
‖b‖2 respectively.

3. In Appendix A.3, we finally use the above bounds on mean and co-variances of degree-d multilin-
ear monomials in order to prove Lemma 3.3.

Remark. To make our notations convenient, we will often write equations such as α = β ± ε which is
to be interpreted as

∣∣α− β∣∣ ≤ ε.
A.1 Product of Inner Products of Normalized Correlated Gaussian Vectors

The following is the main lemma in this subsection (this is the meta-lemma alluded to earlier).

Lemma A.1. Given d,D ∈ Z≥0 and δ > 0 (with D sufficiently larger than d), let (u1, . . . ,ud,v1, . . . ,vd) be a
2dD-dimensional multivariate Gaussian distribution such that,

• each ui,vi ∈ RD are marginally distributed as standard D-dimensional Gaussians, i.e. γD.

• for each j ∈ [D], the joint distribution of the j-th coordinates, i.e., (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j), is inde-
pendent across different values of j.

Then, ∣∣∣∣ E
{ui,vi}i

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
−
∏d
i=1 E

{ui,vi}i

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
.

We point out that there are two steps taking place in Lemma A.1:
(i) the replacement of ‖ui‖2 (and ‖vi‖2) by

√
D (around which it is tightly concentrated), and

(ii) the interchanging of the expectation and the product.
We will handle each of these changes one by one.

Product of Negative Moments of `2-norm of Correlated Gaussian vectors

In order to handle the replacement of ‖ui‖2 (and ‖vi‖2) by
√
D, we will prove some bounds on the mean

and variance of products of negative powers of the `2-norm of a standard Gaussian vector.

Lemma A.2. Let w1, w2, . . . , w` be (possibly correlated) multivariate Gaussians where each wi ∈ RD is
marginally distributed as γD, and let d1, d2, . . . , d` be non-negative integers with d :=

∑`
i=1 di. Then,∣∣∣∣E [ ∏̀

i=1

1

‖wi‖
di
2

]
− 1

Dd/2

∣∣∣∣ ≤ O

(
d5

D
d
2

+1

)
,

Var

[∏̀
i=1

1

‖wi‖di2

]
≤ O

(
d5

Dd+1

)
.

Remark A.3. It is conceivable that the bounds in Lemma A.2 could be improved in terms of the dependence on d.
However, this was not central to our application, so we go ahead with the stated bounds. The main point to note in
the above lemma is the extra factor of D in the denominator.

We start out by first proving the base case where we have a single vector w, that is, ` = 1.

20



Proposition A.4. There exists an absolute constant C such that for sufficiently large d,D ∈ Z>0 satisfying
D > Cd2, we have that for w ∼ γD,∣∣∣∣Ew

[
1

‖w‖d2

]
− 1

Dd/2

∣∣∣∣ ≤ C ·
(

d2

D
d
2

+1

)
, (5)

Var
w

[
1

‖w‖d2

]
≤ 8C ·

(
d2

Dd+1

)
. (6)

Proof. It is well-known that the distribution of ‖w‖2 follows a χ-distribution with parameter D, and
whose probability density function is given by

fD(x) =
xD−1 · e−

x2

2

2
D
2
−1 · Γ(D2 )

, (x ∈ R≥0)

where Γ(·) denotes the Gamma function. Thus, we have that

E
w

[
1

‖w‖d

]
=

∫ ∞
0

1

xd
· fD(x)dx =

∫ ∞
0

xD−d−1 · e−
x2

2

2
D
2
−1 · Γ(D2 )

dx

=
2
D−d−1

2 · Γ
(
D−d

2

)
2
D
2
−1 · Γ(D2 )

=
1

Dd/2
·
(

1±O
(
d2

D

))
,

where the last equality follows from the Stirling’s approximation of the Gamma function, which holds
for every real number z > 0:

Γ(z + 1) =
√

2πz ·
(z
e

)z
·
(

1±O
(

1

z

))
.

This completes the proof of Equation (5), for the explicit constantC that can be derived from the Stirling’s
approximation. Now, Equation (6) immediately follows as:

Var
w

[
1

‖w‖d

]
= E

w

[
1

‖w‖2d

]
− E

w

[
1

‖w‖d

]2

=

(
1

Dd
± C ·

(
(2d)2

Dd+1

))
−
(

1

Dd/2
± C ·

(
d2

Dd/2+1

))2

≤ 8C ·
(

d2

Dd+1

)
,

where, we use that D is sufficiently large that C2
(

d4

Dd+2

)
< 2C ·

(
d2

Dd+1

)
, i.e. D > Cd2.

We now show how to generalize the above to prove Lemma A.2.

Proof of Lemma A.2. More specifically, we will show that,∣∣∣∣E [ ∏̀
i=1

1

‖wi‖
di
2

]
− 1

Dd/2

∣∣∣∣ ≤ C · `3 ·
(

d2

D
d
2

+1

)
(7)

Var

[∏̀
i=1

1

‖wi‖di2

]
≤ 8C · `3 ·

(
d2

Dd+1

)
(8)

where C is the absolute constant (as obtained in Proposition A.4). This implies the lemma since ` ≤ d.
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We proceed by induction on ` (more specifically on log `). For ` = 1, the bound immediately follows
from Proposition A.4. For the inductive step, we assume that the bound in Equations (7) and (8) holds
for `, and we prove that the bound also holds for 2`. While it may seem that our bounds are being proven
only when ` is a power of 2, it is not hard to see that our proof could be done for non powers of 2 as well,
giving a bound that is monotonically increasing in ` and hence it suffices having proved it for ` that are
powers of 2. Let d1, d2, . . . , d2` be non-negative integers with d :=

∑2`
i=1 di. For notational convenience,

let s1 =
∑`

i=1 di and s2 =
∑2`

i=`+1 di, and so d = s1 + s2.
We will first prove Equation (7) inductively by using the following idea: for any two random vari-

ables X and Y , we have E[XY ] = E[X]E[Y ] + Cov[X,Y ] and |Cov[X,Y ]| ≤
√
Var[X] · Var[Y ] (by

Cauchy-Schwarz inequality), and hence E[XY ] = E[X]E[Y ]±
√
Var[X] · Var[Y ]. Thus, we get,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
= E

[∏̀
i=1

1∥∥wi

∥∥di
2

]
·E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
±

√√√√Var

[∏̀
i=1

1∥∥wi

∥∥di
2

]
· Var

[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
. (9)

Using the inductive assumption w.r.t. `, we get that,

E
[∏̀
i=1

1∥∥wi

∥∥di
2

]
=

1

Ds1/2

(
1± C · `3 ·

(
s2

1

D

))
(10)

E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
=

1

Ds2/2

(
1± C · `3 ·

(
s2

2

D

))
(11)

and

Var

[∏̀
i=1

1∥∥wi

∥∥di
2

]
≤ 1

Ds1
· 8C · `3 ·

(
s2

1

D

)
(12)

Var

[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
≤ 1

Ds2
· 8C · `3 ·

(
s2

2

D

)
(13)

Plugging Equations (10) to (13) in Equation (9), it is not hard to see that,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
=

1

Dd/2

(
1± C · (2`)3 ·

(
d2

D

))
.

This completes the proof of Equation (7). Now, Equation (8) follows easily as,

Var

[
2∏̀
i=1

1∥∥wi

∥∥di
2

]
= E

[
2∏̀
i=1

1∥∥wi

∥∥2di
2

]
− E

w

[
2∏̀
i=1

1∥∥wi

∥∥di
2

]2

=

(
1

Dd
± C · (2`)3

(
(2d)2

Dd+1

))
−
(

1

Dd/2
± C · (2`)3 ·

(
d2

Dd/2+1

))2

≤ 8C · (2`)3 ·
(

d2

Dd+1

)
.

Interchanging Product and Expectation

In order to handle the interchanging of the product and expectation operations, we will show the fol-
lowing lemma.
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Lemma A.5. Let (u1, . . . ,ud,v1, . . . ,vd) be distributed as in Lemma A.1. Then,∣∣∣∣ E
{ui,vi}i

[∏d
i=1 〈ui,vi〉

]
−
∏d
i=1 E

{ui,vi}i
[〈ui,vi〉]

∣∣∣∣ ≤ dO(d) ·Dd−1.

Remark A.6. The dO(d) term has an explicit expression, although we only highlight its qualitative nature for
clarity. Again, it is conceivable that the bounds in Lemma A.5 could be improved in terms of the dependence on
d, although we suspect that it is tight upto constant factors in the exponent. Anyhow, this was not central to our
application, so we go ahead with the stated bounds. The main point to note in the above lemma is that the exponent
of D is (d− 1) instead of d.

To prove the lemma, we first obtain the following proposition on moments of a multivariate Gaussian.

Proposition A.7. Let w ∈ R` be any multivariate Gaussian vector with each coordinate marginally distributed
according to γ1. Let d1, d2, . . . , d` be non-negative integers such that d :=

∑`
i=1 di. Then,∣∣∣∣E [∏̀

i=1

wdi
i

]∣∣∣∣ ≤ (2d)3d. (14)

Proof. More specifically we will show that when ` is a power of 2,∣∣∣∣E [∏̀
i=1

wdi
i

]∣∣∣∣ ≤ 2`−1(`d)d. (15)

It is easy to see that this immediately implies the bound of 2d · d2d in the main lemma, since ` ≤ d. How-
ever if ` is not a power of 2 we can round it up to the nearest power of 2, which amounts to substituting
` ≤ 2d in the above, obtaining a bound of 23d · d2d ≤ (2d)3d.

We proceed by induction on ` (more specifically on log `). For ` = 1, we use the well-known fact that for
w ∼ γ1, ∣∣E[wd]

∣∣ =

{
0 if d is odd

(d− 1)!! if d is even

}
≤ dd,

where (d− 1)!! denotes the double factorial of (d− 1), i.e., the product of all integers from 1 to d− 1 that
have the same parity as d − 1. For the inductive step, we assume that the bound in (15) holds for ` and
we show that it also holds for 2`. For notational convenience, let s1 =

∑`
i=1 di and s2 =

∑2`
i=`+1 di, and

so d = s1 + s2.
The main idea that we use to prove the inductive step is Cauchy-Schwarz inequality. Additionally,

we use that Var[X] ≤ E[X2]. Thus, we get,

∣∣∣∣E [ 2∏̀
i=1

wdi
i

]∣∣∣∣ ≤
√√√√E

[∏̀
i=1

w2di
i

]
· E
[ 2∏̀
i=`+1

w2di
i

]
≤
√

2`−1(2`s1)2s1 · 2`−1(2`s2)2s2 ≤ 22`−1(2`d)d ,

where, we use the inductive assumption regarding product of ` terms and that s1 + s2 = d.

Using the above proposition, we are now able to prove Lemma A.5.

Proof of Lemma A.5. Let S ⊆ [D]d be the set of all tuples c ∈ [D]d such that cj 6= ck for all j 6= k ∈ [d]. Let
S denote the complement of S in [D]d. Note that |S| ≤ d2 ·Dd−1. We have that

E
[ d∏
i=1

〈ui,vi〉
]

= E
[ d∏
i=1

D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

E
[ d∏
i=1

ui,civi,ci

]
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=
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
+
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
, (16)

where the last equality follows from the assumption that the distribution of (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j)
is independent across j ∈ [D]. On the other hand, we have that

d∏
i=1

E[〈ui,vi〉] =

d∏
i=1

E
[ D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

d∏
i=1

E[ui,civi,ci ]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

d∏
i=1

E[ui,civi,ci ] (17)

Combining Equations (16) and (17), we get∣∣∣∣E [ d∏
i=1

〈ui,vi〉
]
−

d∏
i=1

E[〈ui,vi〉]
∣∣∣∣ =

∣∣∣∣∑
c∈S

(
E
[ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]

)∣∣∣∣
≤ |S| ·max

c∈S

∣∣∣∣E [ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]

∣∣∣∣
≤ d2 ·Dd−1 ·

(
(2d)3d + 1

)
≤ dO(d) ·Dd−1,

where the second last inequality follows from the fact that |S| ≤ d2 ·Dd−1 and from Proposition A.7.

Putting things together to prove Lemma A.1

Proof of Lemma A.1. We show the following bounds, which immediately imply Lemma A.1.∣∣∣∣ E
{ui,vi}

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
− E
{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (18)∣∣∣∣ E

{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]
−
∏d
i=1 E

{ui,vi}

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (19)

Note that Equation (19) is simply a restatement of Lemma A.5. To prove Equation (18), we define the
random variables

W :=

d∏
i=1

〈ui,vi〉 and Z :=

d∏
i=1

1∥∥ui∥∥2

∥∥vi∥∥2

− 1

Dd
.

Note that Equation (18) is equivalent to showing bounds on |E[W · Z]|. In order to do so, we use the
following four bounds:

1.
∣∣E[W ]

∣∣ ≤ Dd + dO(d) ·Dd−1. Since, by Lemma A.5, we have that

|E[W ]| ≤
∣∣∣∣ d∏
i=1

E[〈ui,vi〉]
∣∣∣∣+ dO(d) ·Dd−1 ≤ Dd + dO(d) ·Dd−1
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2. Var[W ] ≤ dO(d) ·D2d−1. Since,

Var[W ] = E[W 2]− [EW ]2

= E

[
d∏
i=1

〈ui,vi〉2
]
−

[
E

d∏
i=1

〈ui,vi〉

]2

≤ dO(d) ·D2d−1 . . . (from Lemma A.5)

3.
∣∣E[Z]

∣∣ = O
(

d5

Dd+1

)
(follows exactly from Lemma A.2).

4. Var[Z] = O
(

d5

D2d+1

)
(follows exactly from Lemma A.2).

Thus, we can bound |E[W ·Z]| as,

∣∣E[W ·Z]
∣∣ ≤ ∣∣E[W ]

∣∣ · ∣∣E[Z]
∣∣+
√
Var[W ] · Var[Z] ≤ dO(d)

D
.

This completes the proof of Equation (18) and hence of Lemma A.1.

A.2 Mean & Variance Bounds for Multilinear Monomials

For the rest of this section, we simplify our notations as follows:

• For (a, b) ∼ G⊗n0
ρ , we will use ã and b̃ to denote the normalized vectors a

‖a‖2 and b
‖b‖2 respectively.

• We will use U ∈ Rn to denote Mã and similarly V ∈ Rn to denote Mb̃. We will also have
independent variables (a′, b′) ∼ G⊗n0

ρ , for which we use U ′ = Mã′ and V ′ = Mb̃′.

• Ui denotes the i-th coordinate of U . Similarly, mi ∈ Rn0 is the i-th row of M . Note that Ui =
〈mi, ã〉. For S ⊆ [n], let US denote

∏
i∈S Ui =

∏
i∈S 〈mi, ã〉. Similarly for VS .

• We will take expectations over random variables M , a, b, a′, b′. It will be understood that we are
sampling M ∼ γ⊗(n×n0)

1 . Also, (a, b) and (a′, b′) are independently sampled from G⊗n0
ρ .

Lemma A.8 (Mean bounds for monomials). Given parameter d and δ, there exists an explicitly computable
n0 := n0(d, δ) such that the following holds: For any subsets S, T ⊆ [n] satisfying |S|, |T | ≤ d, it holds that,

E
M

E
a,b
USVT =

{
0 if S 6= T

ρ|S| ± δ if S = T
.

In particular, one may take n0 = dO(d)

δ .

Proof. We have that

E
M

E
a,b
USVT = E

M
E
a,b

[∏
i∈S
Ui ·

∏
i∈T
Vi

]
= E

a,b
E
M

[ ∏
i∈S∩T

UiVi ·
∏
i∈S\T

Ui ·
∏
i∈T\S

Vi

]

= E
a,b

E
M

[ ∏
i∈S∩T

〈mi, ã〉
〈
mi, b̃

〉
·
∏
i∈S\T

〈mi, ã〉 ·
∏
i∈T\S

〈
mi, b̃

〉]
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E
M

E
a,b
USVT = E

a,b

[ ∏
i∈S∩T

E
mi

〈mi, ã〉
〈
mi, b̃

〉
·
∏
i∈S\T

E
mi

〈mi, ã〉 ·
∏
i∈T\S

E
mi

〈
mi, b̃

〉]
, (20)

where the last equality follows from the independence of themi’s.

If S 6= T , one of
∏
i∈S\T Emi [〈mi, ã〉] or

∏
i∈T\S Emi [

〈
mi, b̃

〉
] is 0. This is because even for any fixed

vector a and for each i ∈ [n], the random variable 〈mi, ã〉 has zero-mean (and similarly for
〈
mi, b̃

〉
). The

first part of the lemma now follows from Equation (20).

If S = T , Equation (20) becomes

E
M

E
a,b
USVT = E

a,b

[∏
i∈S

E
mi

〈mi,a〉
‖a‖2

〈mi, b〉
‖b‖2

]
= E

a,b

[∏
i∈S

〈a, b〉
‖a‖2‖b‖2

] [
since E

mi

mi ·mT
i = In0×n0 .

]

=
∏
i∈S

[
Ea,b〈a, b〉

n0

]
± δ

[
from Lemma A.1, for n0 =

dO(d)

δ

]
= ρ|S| ± δ.

Lemma A.9 (Covariance bounds for monomials). Given parameters d and δ, there exists an explicitly com-
putable n0 := n0(d, δ) such that the following holds: For any subsets S, T, S′, T ′ ⊆ [n] satisfying |S|, |T |, |S′|, |T ′| ≤
d, it holds that,

if S4T4S′4T ′ 6= ∅ :

∣∣∣∣EM E
a,b

E
a′,b′

[
USVTU

′
S′V

′
T ′
]
−
(
E
M

E
a,b

[USVT ]

)
·
(
E
M

E
a′,b′

[
U ′S′V

′
T ′
])∣∣∣∣ = 0 ,

if S4T4S′4T ′ = ∅ :

∣∣∣∣EM E
a,b

E
a′,b′

[
USVTU

′
S′V

′
T ′
]
−
(
E
M

E
a,b

[USVT ]

)
·
(
E
M

E
a′,b′

[
U ′S′V

′
T ′
])∣∣∣∣ ≤ δ.

Here, S4T4S′4T ′ is the symmetric difference of the sets S, T, S′, T ′, equivalently, the set of all i ∈ [n] which
appear an odd number of times in the multiset S t T t S′ t T ′.
In particular, one may take n0 = dO(d)

δ2
.

In order to prove Lemma A.9, we need the following lemma.

Lemma A.10. Form ∼ γn0 ,

E
a,b,a′,b′

[(
E
m

[〈m, ã〉
〈
m, b̃

〉 〈
m, ã′

〉 〈
m, b̃′

〉
]− E

m
[〈m, ã〉

〈
m, b̃

〉
] · E

m
[
〈
m, ã′

〉 〈
m, b̃′

〉
]

)2]
≤ O

(
1

n0

)
and

E
a,a′

[(
E
m

[〈m, ã〉
〈
m, ã′

〉
]− E

m
[〈m, ã〉] · E

m
[
〈
m, ã′

〉
]

)2]
≤ O

(
1

n0

)
.

Proof. To prove the first part of the lemma, consider the quantity

T (a, b,a′, b′) := E
m

[〈m, ã〉
〈
m, b̃

〉 〈
m, ã′

〉 〈
m, b̃′

〉
]− E

m
[〈m, ã〉

〈
m, b̃

〉
] · E

m
[
〈
m, ã′

〉 〈
m, b̃′

〉
]

=
〈
ã, b̃

〉〈
ã′, b̃′

〉
+
〈
ã, ã′

〉 〈
b̃, b̃′

〉
+
〈
ã, b̃′

〉〈
ã′, b̃

〉
−
〈
ã, b̃

〉〈
ã′, b̃′

〉
=
〈
ã, ã′

〉 〈
b̃, b̃′

〉
+
〈
ã, b̃′

〉〈
ã′, b̃

〉
.
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where we use that for any j ∈ [n0], it holds that Em[m4
j ] = 3 and Em[m2

j ] = 1. Thus,

E
a,b,a′,b′

[
T (a, b,a′, b′)2

]
= E

a,b,a′,b′

[[〈
ã, ã′

〉 〈
b̃, b̃′

〉
+
〈
ã, b̃′

〉〈
ã′, b̃

〉]2
]

≤ 2 · E
a,b,a′,b′

[〈
ã, ã′

〉2
〈
b̃, b̃′

〉2
]

+ 2 · E
a,b,a′,b′

[〈
ã, b̃′

〉2 〈
ã′, b̃

〉2
]

≤ O

(
1

n0

)
,

where the last step follows by two applications of Lemma A.1 (with d = 4). This completes the proof of
the first part of the lemma. The second part of the lemma similarly follows from Lemma A.1 (with d = 2)
along with the fact that Em[〈m, ã〉] = 0.

Proof of Lemma A.9. Let 1(E) denote the 0/1 indicator function of an event E. We have that

E
M

E
a,b

E
a′,b′

[
USVTU

′
S′V

′
T ′
]

= E
M

E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

U
1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]

= E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]]
. (21)

On the other hand, we have that

E
M

E
a,b

[USVT ] = E
a,b

E
M

[ ∏
i∈S∪T

U
1(i∈S)
i V

1(i∈T )
i

]
= E

a,b

[ ∏
i∈S∪T

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]]
, (22)

and similarly, E
M

E
a′,b′

[
U ′S′V

′
T ′
]

= E
a′,b′

[ ∏
i∈S′∪T ′

E
mi

[
U

1(i∈S′)
i V

1(i∈T ′)
i

]]
. (23)

If there exists i ∈ S∪T ∪S′∪T ′ that appears in an odd number of S, T , S′ and T ′, then it can be seen that
the expectation in Equation (21) is equal to 0, and that at least one of the expectations in Equations (22)
and (23) is equal to 0. This already handles the case that S4T4S′4T ′ 6= ∅.

Henceforth, we assume that each i ∈ S ∪ T ∪ S′ ∪ T ′ appears in an even number of S, T , S′ and T ′.
Assume for ease of notation that S ∪ T ∪ S′ ∪ T ′ ⊆ [4d]. Define

gi(a, b,a
′, b′) := E

mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]
(24)

hi(a, b) := E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]
. (25)

h′i(a
′, b′) := E

mi

[
U
′1(i∈S′)
i V

′1(i∈T ′)
i

]
. (26)

Combining Equations (21) to (23) along with the definitions in Equations (24) to (26), we get∣∣∣∣ EM E
a,b

E
a′,b′

[
USVTU

′
S′V

′
T ′
]
− E

M
E
a,b

[USVT ] · E
M

E
a′,b′

[
U ′S′V

′
T ′
] ∣∣∣∣

=

∣∣∣∣ Ea,b E
a′,b′

[
4d∏
i=1

gi(a, b,a
′, b′)−

4d∏
i=1

hi(a, b) · h′i(a′, b′)

] ∣∣∣∣
=

∣∣∣∣ Ea,b E
a′,b′

 4d∑
j=1

j−1∏
i=1

hi(a, b) · h′i(a′, b′)
4d∏
i=j

gi(a, b,a
′, b′)−

j∏
i=1

hi(a, b) · h′i(a′, b′)
4d∏

i=j+1

gi(a, b,a
′, b′)

 ∣∣∣∣
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≤
4d∑
j=1

∣∣∣∣ Ea,b E
a′,b′

j−1∏
i=1

hi(a, b) · h′i(a′, b′)
4d∏

i=j+1

gi(a, b,a
′, b′) ·

[
gj(a, b,a

′, b′)− hj(a, b) · h′j(a′, b′)
] ∣∣∣∣

≤ 4 · d ·
√
τ · κ,

where the last inequality follows from the Cauchy-Schwarz inequality with

τ := max
j∈[4d]

E
a,b

E
a′,b′

j−1∏
i=1

hi(a, b)
2 · hi(a′, b′)2

4d∏
i=j+1

gi(a, b,a
′, b′)2


κ := max

j∈[4d]
E
a,b

E
a′,b′

[
gj(a, b,a

′, b′)− hj(a, b) · hj(a′, b′)
]2

Lemma A.10 implies that κ ≤ O(1/n0). We now show that τ ≤ 2O(d). Note that for any i ∈ [n0], it holds
that,

hi(a, b) =


〈
ã, b̃

〉
if i ∈ S and i ∈ T

1 if i /∈ S and i /∈ T
0 otherwise

and h′i(a
′, b′) =


〈
ã′, b̃′

〉
if i ∈ S′ and i ∈ T ′

1 if i /∈ S′ and i /∈ T ′
0 otherwise

gi(a, b,a
′, b′) =



〈
ã, b̃

〉〈
ã′, b̃′

〉
+ 〈ã, ã′〉

〈
b̃, b̃′

〉
+
〈
ã, b̃′

〉〈
ã′, b̃

〉
if i ∈ S ∩ T ∩ S′ ∩ T ′〈

ã, b̃
〉

if i ∈ S ∩ T and i /∈ S′ ∪ T ′

〈ã, ã′〉 if i ∈ S ∩ S′ and i /∈ T ∪ T ′〈
ã, b̃′

〉
if i ∈ S ∩ T ′ and i /∈ S′ ∪ T〈

ã′, b̃
〉

if i ∈ S′ ∩ T and i /∈ S ∪ T ′〈
ã′, b̃′

〉
if i ∈ S′ ∩ T ′ and i /∈ S ∪ T〈

b̃, b̃′
〉

if i ∈ T ∩ T ′ and i /∈ S ∪ S′

1 otherwise

Thus, if we expand out a single term
∏j−1
i=1 hi(a, b)

2 · hi(a′, b′)2
∏4d
i=j+1 gi(a, b,a

′, b′)2, we get at most
38d terms (since each gi can increase the number of terms by a factor of at most 3). Each of these terms
is the expectation of the product of inner product of some correlated Gaussian vectors. We have from
Lemma A.1 that each such term is at most 1 + δ and thus τ ≤ 2O(d). Thus, for an explicit choice of n0 that
is upper bounded by dO(d)/δ2, we get that 4d

√
τκ ≤ δ, which concludes the proof of the lemma.

A.3 Mean & Variance Bounds for Multilinear Polynomials

We are now ready to prove Lemma 3.3. Recall again that,

F (M) = E
a,b

[A(U) ·B(V )] where, U =
Ma∥∥a∥∥

2

and V =
Mb∥∥b∥∥

2

.

We wish to bound the mean and variance of F (M). These proofs work by considering the Hermite
expansions of A and B given by,

A(X) =
∑
S⊆[n]

ÂSXS and B(X) =
∑
T⊆[n]

B̂TYT .

The basic definitions and facts related to Hermite polynomials were given in Section 2.

28



Proof of Lemma 3.3. We start out by proving the bound on
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣. To this end, we will

use Lemma A.8 with parameters d and δ. Thus, for a choice of n0 = dO(d)/δ2, we have that,∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣

=

∣∣∣∣EM E
a,b

[A(U) ·B(V )]− E
X,Y ∼G⊗nρ

[A(X) ·B(Y )]
∣∣∣∣

=

∣∣∣∣∣ ∑S,T⊆[n]

ÂSB̂T ·
(
E
M

E
a,b

[US · VT ]− EX,Y ∼G⊗nρ [XS · YT ]

)∣∣∣∣∣
=

∣∣∣∣∣ ∑S⊆[n]

ÂSB̂S ·
(
E
M

E
a,b

[US · VS ]− ρ|S|
)∣∣∣∣∣ . . . (terms corresponding to S 6= T are 0.)

≤
∑
S⊆[n]

∣∣∣ÂSB̂S∣∣∣ · δ . . . . . . (using Lemma A.8)

≤
∥∥A∥∥

2
·
∥∥B∥∥

2
· δ . . . . . . (Cauchy-Schwarz inequality)

≤ δ . . . . . . (
∥∥A∥∥

2
,
∥∥B∥∥

2
≤ 1)

We now move to proving the bound on VarM (F (M)). To this end, we will use Lemma A.9 with param-
eters d and δ/9d. Thus, for a choice of n0 = dO(d)/δ2, we have that,

E
M

(
E
a,b
A(U) ·B(V )

)2

−
(
E
M

E
a,b
A(U) ·B(V )

)2

=

∣∣∣∣EM E
a,b

E
a′,b′

[A(U)B(V )A(U ′)B(V ′)]−
(
E
M

E
a,b

[A(U)B(V )]

)
·
(
E
M

E
a′,b′

[A(U ′)B(V ′)]

)∣∣∣∣
≤

∑
S,T⊆[n]
S′,T ′⊆[n]

∣∣∣ÂSB̂T ÂS′B̂T ′∣∣∣ · ∣∣∣∣EM E
a,b

E
a′,b′

[
USVTU

′
S′V

′
T ′
]
−
(
E
M

E
a,b

[USVT ]

)
·
(
E
M

E
a′,b′

[
U ′S′V

′
T ′
])∣∣∣∣

≤ δ

9d
·

∑
S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′∣∣∣ .
To finish the proof, we will show that,∑

S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′∣∣∣ ≤ 9d ·
∥∥A∥∥2

2
·
∥∥B∥∥2

2
.

Define functions f : {1,−1}n → R, g : {1,−1}n → R over the boolean hypercube as,

f(x) =
∑
S⊆[n]
|S|≤d

ÂSXS(x) and g(x) =
∑
S⊆[n]
|S|≤d

B̂SXS(x) .

Hypercontractivity bounds [Wol07] for degree-d polynomials over the boolean hypercube imply that,

E
x

[
f(x)4

]
≤ 9d

(
E
x

[
f(x)2

])2
and E

x

[
g(x)4

]
≤ 9d

(
E
x

[
g(x)2

])2
.

We now finish the proof as follows,∑
S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′∣∣∣ = E
x

[
f(x)2g(x)2

]
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≤
(
E
x

[
f(x)4

])1/2
·
(
E
x

[
g(x)4

])1/2
. . . (Cauchy-Schwarz)

≤ 9d ·
(
E
x

[
f(x)2

])
·
(
E
x

[
g(x)2

])
. . . (Hypercontractivity)

= 9d ·
∥∥A∥∥2

2
·
∥∥B∥∥2

2
.

Thus, overall we get that, VarM (F (M)) ≤ δ.

This completes the proof of Lemma 3.3 for an explicit choice of n0 ≤ dO(d)/δ2. �

B Proof of Low-Degree Multilinear Transformation Lemma

The goal of this section is to prove Lemma 4.1, which follows immediately by putting together the follow-
ing two lemmas. The first lemma transforms general functions to low-degree polynomials and second
lemma subsequently transforms it to multilinear polynomials.

Lemma B.1 (Low Degree Transformation). Given parameters ρ ∈ [0, 1], δ > 0, k ∈ N, there exists an explicit
d = d(ρ, k, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, such that, for any j ∈ [k] : Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rn → Rk and B̃ : Rn → Rk such that the following hold.

1. Ã and B̃ have degree at most d.

2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.

3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2

+ δ and
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2

+ δ

4. For every i, j ∈ [k], ∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj〉G⊗nρ
∣∣∣∣ ≤ δ√

k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
.

Lemma B.2 (Multi-linear Transformation). Given parameters ρ ∈ [0, 1], δ > 0, d, k ∈ Z≥0, there exists an
explicit t = t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk be degree-d polynomials, such that, for any j ∈ [k] : Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following hold:

1. Ã and B̃ are multilinear with degree at most d.

2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.

3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2

+ δ and
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2

+ δ

4. For every i, j ∈ [k], ∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take t = O
(
kd2

δ2

)
.
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Simple Proposition for Rounding

Before getting to the proofs of the above lemmas, we present a simple proposition that will be useful. It
says that if we have two strategies which are close in `2-distance, and one of them is close to the simplex
∆k, then so is the other. The proof follows by a straightforward triangle inequality.

Proposition B.3. For A : Rn → Rk and Ã : Rn → Rk such that ‖A‖2, ‖Ã‖2 ≤ 1, it holds that,

‖R(Ã)− Ã‖2 ≤ ‖R(A)−A‖2 + ‖A− Ã‖2 .

B.1 Transformation to Low-Degree

The key idea behind Lemma B.1 is quite standard, that applying a “small” amount of noise (via the
Ornstein-Uhlenbeck operator) to a pair of functions doesn’t hurt their correlation “significantly”. In
particular, we have the following lemma.

Lemma B.4. Let P,Q ∈ L2(Rn, γn) and ε > 0. There exists ν = ν(ρ, ε) such that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣ ≤ ε ·√Var[P ]Var[Q]

In particular, one may take ν := (1− ε)log ρ/(log ε+log ρ), or even ν := 1− C (1−ρ)ε
log(1/ε) for some constant C > 0.

Proof. Consider the Hermite expansions of P and Q. That is,

P (X) =
∑
σ∈Zn≥0

P̂ (σ)Hσ(X) and Q(Y ) =
∑
σ∈Zn≥0

Q̂(σ)Hσ(Y ).

Using properties of Hermite polynomials, namely, UνHσ = ν|σ|Hσ, we get that,

UνP (X) =
∑
σ∈Zn≥0

ν|σ|P̂ (σ)Hσ(X) and UνQ(Y ) =
∑
σ∈Zn≥0

ν|σ|Q̂(σ)Hσ(Y ).

Our choice of ν was to ensures that ρd
(
1− ν2d

)
≤ ε for all d ∈ N. Thus, we get that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣

=

∣∣∣∣ ∑σ 6=0

ρ|σ| · P̂ (σ)Q̂(σ) ·
(
1− ν2|σ|)∣∣∣∣

≤
∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ · ρ|σ| (1− ν2|σ|

)
≤ ε ·

∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ . . . (since, ρd

(
1− ν2d

)
≤ ε for all d ∈ N)

≤ ε ·
√
Var[P ]Var[Q] . . . (Cauchy-Schwarz inequality)

The above lemma transforms general functions into functions which are concentrated on low-degree.
Thus, to complete the proof of Lemma B.1, we consider the definition of low-degree truncation.

Definition B.5 (Low-degree truncation). Let A ∈ L2(Rn, γn) is given by the Hermite expansion A(X) =∑
σ∈Zn≥0

ÂσHσ(X). The degree-d truncation of A is defined as the function A≤d ∈ L2(Rn, γn) given by

A≤d(X) :=
∑
σ∈Zn≥0

|σ|≤d

ÂσHσ(X).
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That is, A≤d is obtained by retaining only the terms with degree at most d in the Hermite expansion of A, where
recall that for σ ∈ Zn≥0, its degree is defined as |σ| =

∑n
i=1 σi.

For convenience, define A>d := A − A≤d. Also, for vector valued functions A, we define A≤d as the function
obtained by applying the above low-degree truncation on each coordinate.

Proof of Lemma B.1. We obtain Ã and B̃ by first applying some suitable amount of noise to the functions
such that the functions have decaying Hermite tails and then truncating the Hermite coefficients corre-
sponding to terms larger than degree d.

In particular, given parameter δ, we first choose ε and ν in Lemma B.4, such that ε = δ
2
√
k

and

then ν = 1 − C (1−ρ)ε
log(1/ε) as required. We choose d to be large enough such that ν2d ≤ δ

4
√
k

, that is, d =

O
(

log(k/δ)
log(1/ν)

)
= O

(√
k log2(k/δ)
δ(1−ρ)

)
. Finally, we let Ã := (UνA)≤d and B̃ := (UνB)≤d.

We now verify the four properties required of the lemma.

1. By definition, Ã and B̃ have degree at most d.

2. Var(Ãi) =
∑
σ 6=0
|σ|≤d

ν2|σ| · Âi(σ)2 ≤ Var(Ai). Similarly, Var(B̃i) ≤ Var(Bi).

3. For convenience, define A := UνA, and hence Ã = A
≤d. Observe that, since ∆k is a convex body,∥∥R(v)− v

∥∥2

2
is a convex function in v ∈ Rk. Thus, we have that,∥∥R(A)−A
∥∥2

2
= E

X∼γn

∥∥R(A(X))−A(X)
∥∥2

2

= E
X∼γn

∥∥∥∥R( E
X′∼Uν(X)

A(X ′)

)
− E

X′∼Uν(X)
A(X ′)

∥∥∥∥2

2

≤ E
X∼γn

E
X′∼Uν(X)

∥∥R (A(X ′))−A(X ′)
∥∥2

2
. . . (using convexity of

∥∥R(v)− v
∥∥2

2
)

= E
X′∼γn

∥∥R (A(X ′))−A(X ′)
∥∥2

2

=
∥∥R(A)−A

∥∥2

2
.

Next, observe that,
∥∥∥A>d∥∥∥2

2
=

∑
|σ|>d

ν2|σ| · ‖Â(σ)‖22 ≤ ν2d ·
√
k ≤ δ

4 . Thus, we get that,

∥∥∥R(Ã)− Ã
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2

+
∥∥∥A− Ã∥∥∥

2
. . . (Proposition B.3)

=
∥∥R(A)−A

∥∥
2

+
∥∥∥A>d∥∥∥

2

≤
∥∥R(A)−A

∥∥
2

+ δ/4 .

Similar argument holds for B̃.

4. For every i, j ∈ [k], we simply have from Lemma B.4 that
∣∣∣〈Ai, Bj

〉
G⊗nρ
− 〈Ai, Bj〉G⊗nρ

∣∣∣ ≤ ε = δ
2
√
k

.

Additionally, since
∥∥∥Ãi −Ai∥∥∥

2
≤ δ

4
√
k

and
∥∥∥B̃j −Bj

∥∥∥
2
≤ δ

4
√
k

, we get using Proposition 2.1 that∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj

〉
G⊗nρ

∣∣∣∣ ≤ δ
2
√
k

. We get the desired statement by combining the two above

statements.
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B.2 Transformation to Multi-linear

The key idea behind Lemma B.2 is similar to that of Lemma B.1 in that, we first apply a transformation on
our polynomials that makes it concentrated on multilinear terms, while slightly increasing the number
of variables. Subsequently, we apply a multi-linear truncation defined as follows.

Definition B.6 (Multilinear truncation). Suppose A ∈ L2(Rn, γn) is given by the Hermite expansion A(x) =∑
σ∈Zn≥0

ÂσHσ(x). The multilinear truncation of A is defined as the function Aml ∈ L2(Rn, γn) given by

Aml(x) :=
∑

σ∈{0,1}n
ÂσHσ(x).

That is, Aml is obtained by retaining only the multilinear terms in the Hermite expansion of A.
For convenience, also define Anml := A−Aml. Also, for vector valued functions A, we define Aml as the function
obtained by applying the above multilinear truncation on each coordinate.

Lemma B.7. Given parameters ρ ∈ [0, 1], δ > 0 and d ∈ Z≥0, there exists t = t(d, δ) such that the following
holds:

Let A,B ∈ L2(Rn, γn) be degree-d polynomials, such that
∥∥A∥∥

2
,
∥∥B∥∥

2
≤ 1. Define polynomials A,B ∈

L2(Rnt, γnt) over variables X :=
{
X

(i)
j : (i, j) ∈ [n]× [t]

}
and Y :=

{
Y

(i)
j : (i, j) ∈ [n]× [t]

}
respectively,

as,
A
(
X
)

:= A(X(1), . . . ,X(n)) and B
(
Y
)

:= B(Y (1), . . . ,Y (n))

where X(i) =
(
X

(i)
1 + · · ·+X(i)

t

)
/
√
t and Y (i) =

(
Y

(i)
1 + · · ·+ Y (i)

t

)
/
√
t. Since (X(i),Y (i)) is distributed

according to Gρ, this transformation doesn’t change the “structure” of A and B. In particular, it is follows that,〈
A,B

〉
G⊗ntρ

= 〈A,B〉G⊗nρ and
∥∥A∥∥

2
=
∥∥A∥∥

2
and

∥∥B∥∥
2

=
∥∥B∥∥

2

Next, let Aml
, B

ml ∈ L2(Rnt, γnt) be the multilinear truncations of A and B respectively. Then the following
hold,

1. Aml and Bml are multilinear with degree at most d.

2. Var(A
ml

) ≤ Var(A) ≤ 1 and Var(B
ml

) ≤ Var(B) ≤ 1.

3.
∥∥∥Aml −A

∥∥∥
2
,
∥∥∥Bml −B

∥∥∥
2
≤ δ/2.

4.
∣∣∣∣〈Aml

, B
ml
〉
G⊗ntρ

− 〈A,B〉G⊗nρ

∣∣∣∣ ≤ δ.

In particular, one may take t = O
(
d2

δ2

)
.

In order to prove Lemma B.7, we will need the following multinomial theorem for Hermite polyno-
mials. It can be proved quite easily using the generating function for Hermite polynomials.

Fact B.8 (Multinomial theorem for Hermite polynomials). Let β1, . . . , βt ∈ R satisfying
∑t

i=1 β
2
i = 1. Then,

for any d ∈ N, it holds that

Hd (β1X1 + · · ·+ βtXt) =
∑

d1,...,dt∈Z≥0

d1+···+dt=d

√
d!

d1! · · · dt!
·
t∏
i=1

βdii Hdi(Xi) .
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Proof of Lemma B.7. Before we prove the theorem, we will first understand the effect of the transforma-
tion from X to X for a univariate Hermite polynomial. Instantiating βi’s in Fact B.8 with 1/

√
t, we get

that,

Hd

(
X1 + · · ·+Xt√

t

)
=

∑
d1,...,dt∈Z≥0

d1+···+dt=d

√
d!

d1! · · · dt!
·
∏t
i=1Hdi(Xi)

td/2
.

We will split the terms into multilinear and non-multilinear terms, writing the above as Hml
d + Hnml

d .
Note that there are at most O(d

2td−1

d! ) non-multilinear terms (for t � d2). Also, note that each coefficient
1
td/2
·
√

d!
d1!···dt! is at most

√
d!
td

. Thus, we can bound
∥∥Hnml

d

∥∥
2

as follows,

∥∥Hnml
d

∥∥2

2
=

∑
d1,...,dt∈Z≥0

d1+···+dt=d
∃i di≥2

(
1

td/2
·
√

d!

d1! · · · dt!

)2

≤ O

(
d2td−1

d!

)
· d!

td
≤ O

(
d2

t

)
(27)

More generally, if we consider a term Hσ

(
X
)

= Hσ1(X(1)) ·Hσ2(X(2)) · · ·Hσn(X(n)), where each X(i) =(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t. Let’s write Hσ

(
X
)

= H
ml
σ

(
X
)

+H
nml
σ

(
X
)
, that is, separating out the multilin-

ear and non-multilinear terms. Similarly, for any i, let Hσi(X
(i)) = Hml

σi (X(i)) + Hnml
σi (X(i)). We wish to

bound
∥∥∥Hnml

σ

∥∥∥
2
, which can be done as follows,

∥∥∥Hnml
σ

∥∥∥2

2
=

∥∥∥∥ n∏
i=1

(Hml
σi +Hnml

σi )−
n∏
i=1

Hml
σi

∥∥∥∥2

2

≤
n∏
i=1

(
1 +O

(
σ2
i

t

))
− 1 (from Equation (27))

≤ O

(
|σ|2

t

)
(since, t� |σ|2)

Thus,
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. (for t = Θ(d2/δ2)) (28)

We are now ready to prove the parts of Lemma B.7.

1. It holds by definition that Aml and B
ml are multilinear. Also, note that the transformation from A

to A and finally to Aml does not increase the degree. So both Aml and Bml have degree at most d.

2. It is easy to see that Var(A) = Var(A). Since Aml is obtained by truncating certain Hermite coeffi-
cients of A, it immediately follows that Var(Aml

) ≤ Var(A) = Var(A) ≤ 1. Similarly, Var(Bml
) ≤

Var(B) ≤ 1.

3. Recall thatAnml
= A−Aml. We wish to bound

∥∥∥Anml
∥∥∥2

2
≤ δ2/4. Consider the Hermite expansion of

A, namely A(X) =
∑

σ∈Zn≥0
Â(σ) ·Hσ(X). Note that, Anml (

X
)

=
∑

σ∈Zn≥0
Â(σ) ·Hnml

σ

(
X
)
, where

recall thatHnml
σ is the non-multilinear part ofHσ

(
X
)

= Hσ1(X(1))·Hσ2(X(2)) · · ·Hσn(X(n)), where

each X(i) =
(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t.

From Equation 28, we have that for any σ ∈ Zn≥0, it holds that
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. And hence we get

that, ∥∥∥Anml
∥∥∥2

2
=
∑
σ

Â(σ)2 ·
∥∥∥Hnml

σ

∥∥∥2

2
≤
∑
σ

Â(σ)2 · (δ2/4) = (δ2/4)
∥∥A∥∥2

2
≤ (δ2/4).
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Note that, here we use that Hσ(X) are mutually orthogonal for different σ. Similarly, we can also

get that
∥∥∥Bnml

∥∥∥2

2
≤ δ2/4.

4. Note that we already have, 〈
A,B

〉
G⊗ntρ

= 〈A,B〉G⊗nρ .

And combining Part 3 and Proposition 2.1, we immediately get that∣∣∣∣〈Aml
, B

ml
〉
G⊗ntρ

−
〈
A,B

〉
G⊗ntρ

∣∣∣∣ ≤ δ

where we use that
∥∥∥Bml

∥∥∥
2
≤
∥∥B∥∥

2
≤ 1 and

∥∥∥Aml
∥∥∥

2
≤
∥∥A∥∥

2
≤ 1.

Proof of Lemma B.2. We apply the transformation in Lemma B.7, with parameter δ being δ/
√
k, to each of

the k-coordinates of A : Rn → Rk and B : Rn → Rk to get polynomials Ã : Rnt → Rk and B̃ : Rn → Rk.
Namely, for any j ∈ [k], we set Ãj(X) = A

ml
j (X) and B̃j(Y ) = B

ml
j (Y )as described in Lemma B.7.

It is easy to see that parts 1, 2, 4 follow immediately from the conditions satisfied in Lemma B.7. For
part 3, we have that

∥∥∥Aml
j −Aj

∥∥∥
2
≤ δ/

√
k for every j ∈ [k], which implies that

∥∥∥Aml −A
∥∥∥

2
≤ δ. Using

Proposition B.3, we immediately get that,∥∥∥R(A
ml

)−Aml
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2

+ δ .

Finally, it is a simple observation that
∥∥R(A)−A

∥∥
2

=
∥∥R(A)−A

∥∥
2
, and hence,∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2

+ δ .

Similarly,
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2

+ δ. This concludes the proof.
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