Axiom of Choice

Pritish Kamath 3rd Year Undergraduate, CSE Dept. IIT Bombay

Popular Talk

 "You lose half the viewers for every mathematical statement you mention."

 Stephen Hawking
 (A Brief History of Time)

Popular Talk

- "You lose half the viewers for every mathematical statement you mention."
 Stephen Hawking (A Brief History of Time)
- "No slide should contain more than one sentence. Ideally should contain none."
 -- A guide to good presentations

Popular Talk

- "You lose half the viewers for every mathematical statement you mention."

 Stephen Hawking (A Brief History of Time)
- "No slide should contain more than one sentence. Ideally should contain none."
 -- A guide to good presentations (pardon this one contradiction...)

Overview

- What is an Axiom?
- Axiom of *Choice*
- A puzzle
- Impossible solution of that puzzle!

(ok... pardon this slide as well...)

What is an Axiom?

 a statement or proposition which is regarded as being established, accepted, or *self-evidently true*. -- Oxford Dictionary

What is an Axiom?

- a statement or proposition which is regarded as being established, accepted, or *self-evidently true*.
 -- Oxford Dictionary
- self evident truth requiring no proof.
 Barrons' Word List #5

What is an Axiom?

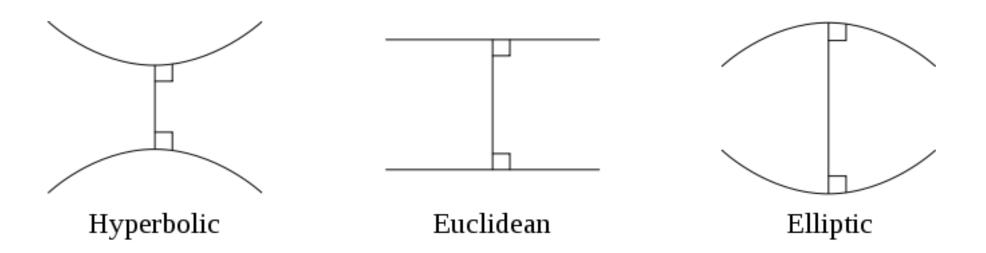
- a statement or proposition which is regarded as being established, accepted, or *self-evidently true*.
 -- Oxford Dictionary
- self evident truth requiring no proof.
 Barrons' Word List #5
- Surprisingly, this is pretty much against the widely accepted technical interpretation!

• Given a line and a point outside the line, there exists a unique line parallel to the given line and passing through the given point.

• The parallel postulate can neither be proved nor disproved using the other axioms of Geometry!

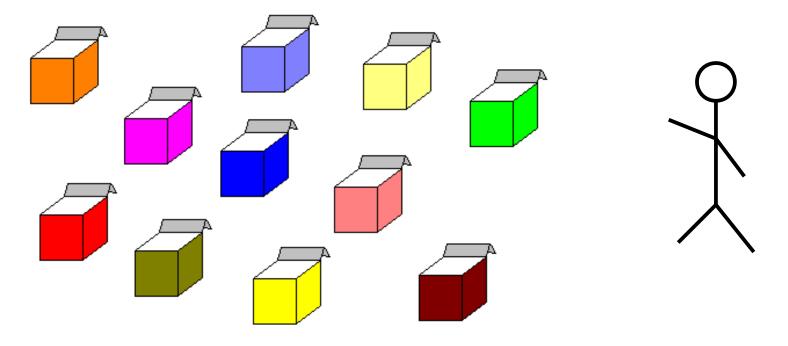
• So am I allowed to assume that the statement is false, without sounding illogical?

• So am I allowed to assume that the statement is false, without sounding illogical?



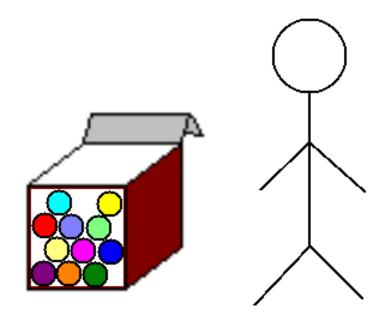
Axiom of *Choice*

 Given a set of non-empty boxes, it is possible to choose an object from each box.

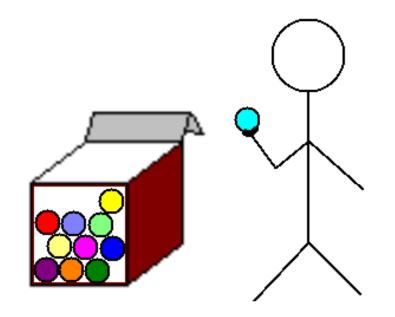


-Any Questions ?

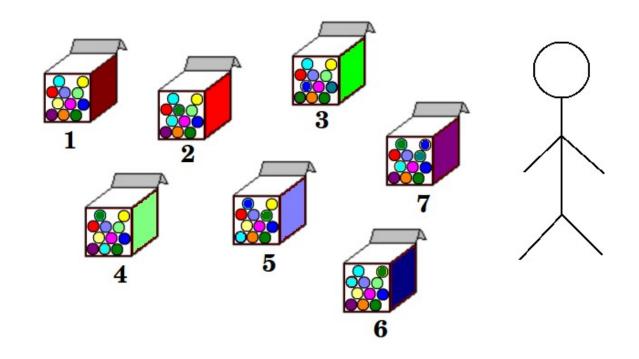
Given one non-empty box, is it possible to choose an object from that box?



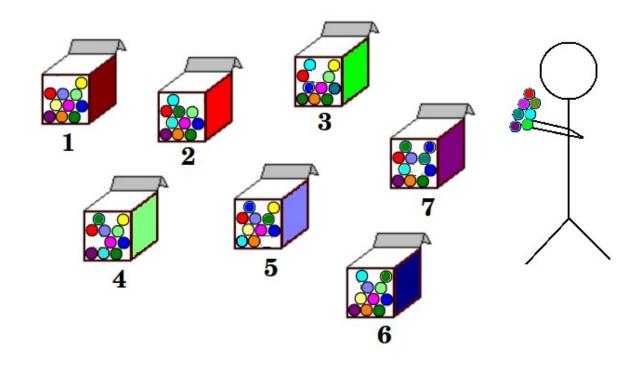
• Yes!! Give me a box. I can choose one element from it...



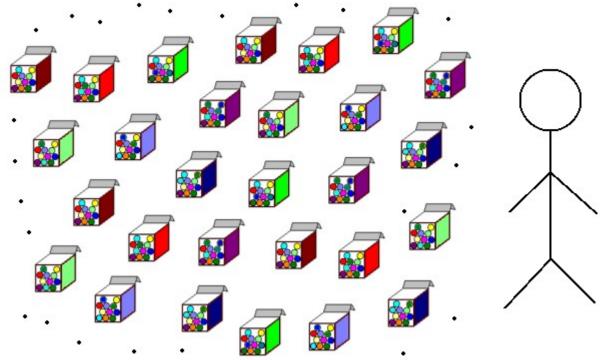
 Given a *finite number of non-empty boxes*, is it possible to *choose* an object from each box?



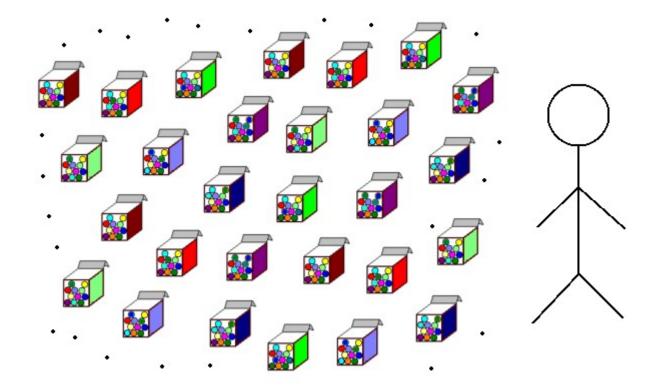
• Yes!! Give me finite number of boxes. I can go to each box and choose an element from that...



Given an *infinite number of non-empty boxes*, is it possible to *choose* an object from each box?



• I just can't go to every box and pick one object from each... :-/

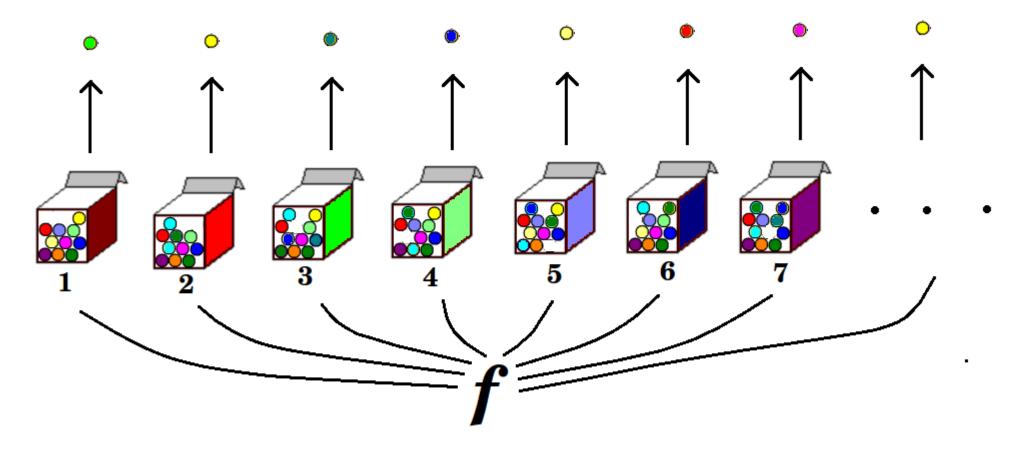


• Question :

- What is the *Math* way of representing infinite number of objects? And

- How to deal with them?

Answer : Sets and Functions
 Use a function to choose an object from each box.



Example of a Choice Function

• Question :

. . . .

Given a collection of boxes such that,

```
Box_1 contains 1, 2, ..., 10
```

Box₂ contains 11, 12, ..., 20

.... Box_n contains 10(n-1)+1, 10(n-1) + 2, ..., 10(n)

- Example, Choice function : $f(Box_n) = 10(n-1) + 3$;
- So we get {3, 13, 23, ... }.

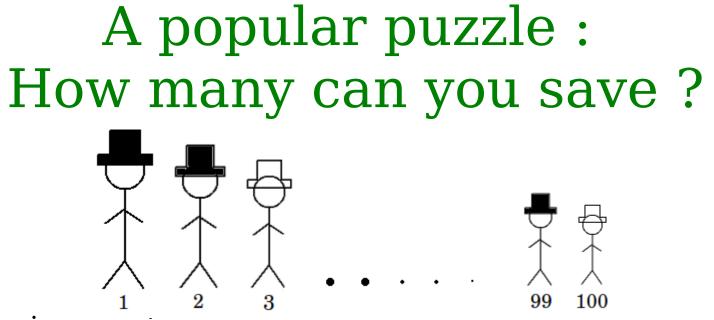
Does there always exist a Choice Function ?

 "The Axiom of Choice is necessary to select a set from an infinite number of socks, but not an infinite number of shoes."

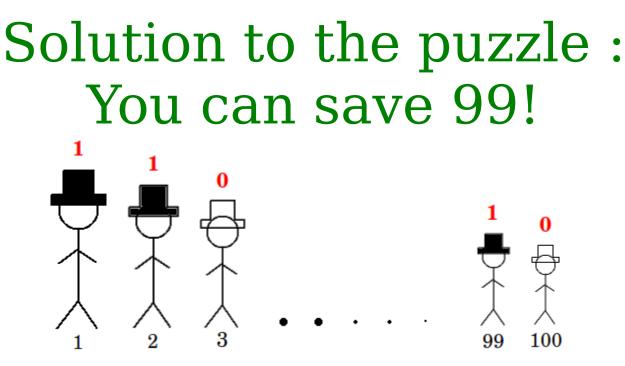
— Bertrand Russell

• **Banach Tarski Paradox** : It is possible to divide a sphere into finitely many pieces and put them back together to get two spheres!

Proof out of scope for the talk!

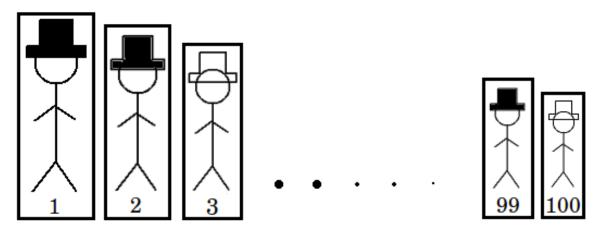


- 100 prisoners in a row
- Each is made to wear a black or white hat
- Each prisoner can look at colours of all hats in front of him, but not his own, nor those behind him.
- Starting from the last, each prisoner is asked to guess the colour of his hat.
- if guessed correctly, the prisoner is released, else, the prisoner is executed.



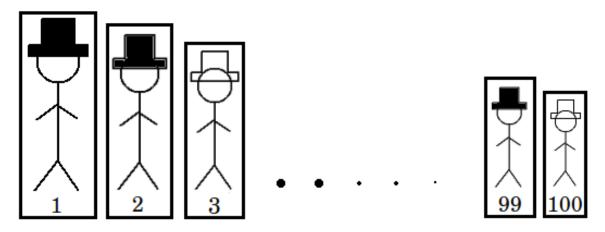
- Represent hat-sequence as a sequence of 1's and 0's.
- Last prisoner adds all the hat numbers in front of him
- guesses *black* if answer is *odd*, *white* if answer is *even*.
- Everybody else *comes to know* his hat colour!

Modification of the puzzle : How many can you save ?

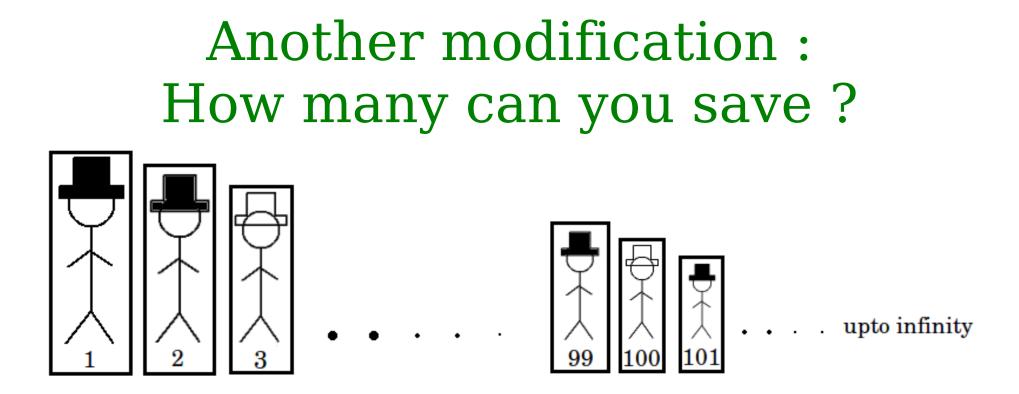


- 100 prisoners in a row, *standing inside glass boxes*.
- Each prisoner can look at colours of all hats in front of him, but not his own, nor those behind him.
- Answer given by a prisoner is not heard by any other prisoner.

Modification of the puzzle : How many can you save ?

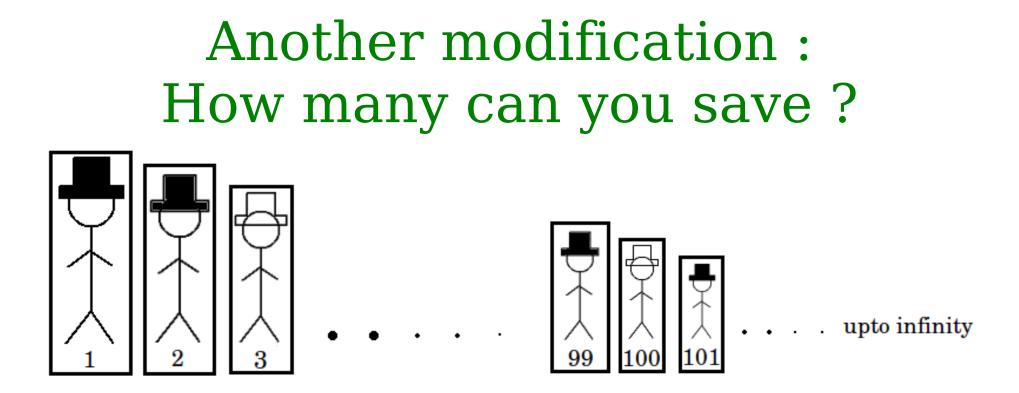


- There does not seem to be any good strategy. :(
- On an *average*, you will save **50**. :(
- In the *worst case*, you will save **0**. :(

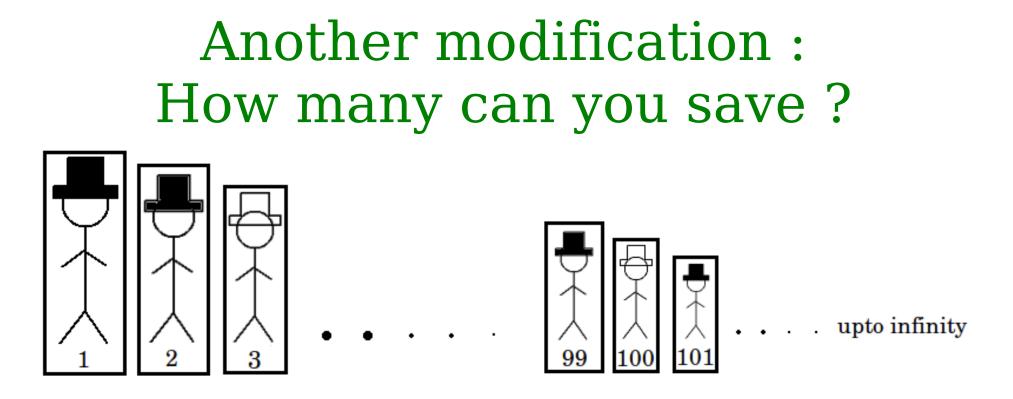


- *Infinite* prisoners in a row, standing inside glass boxes.
- Remaining rules as before!

(taken from : <u>http://cornellmath.wordpress.com/2007/09/13/the-axiom-of-choice-is-wrong/</u>)

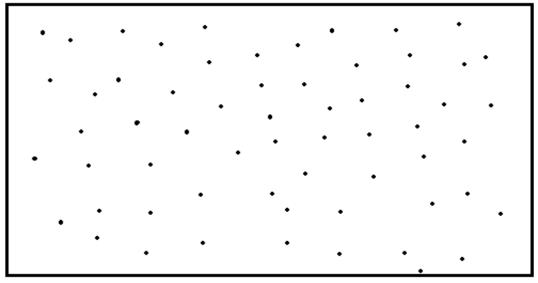


- There doesn't seem to be any strategy! :(
- Average Case : you lose **infinite** people! :(
- Worst Case : you lose everybody... :'(



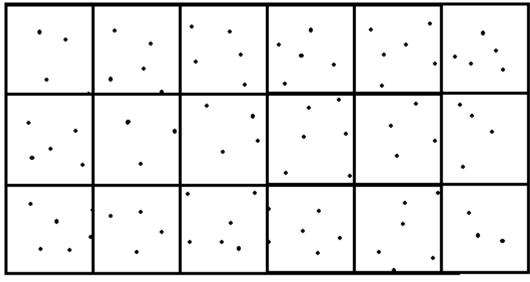
- Axiom of Choice comes to the rescue! :)
- *Worst Case* : you lose **atmost finite**ly many prisoners! \m/

Alternate view of the Axiom of Choice



• Given : - A *Set*

Alternate view of the Axiom of Choice



- Given :
 - A Set
 - A *Partition* over the set (each partition is non-empty).
- it is possible to *choose* an element from each *partition*.

• One way : Manually group objects into partitions.

- One way : Manually group objects into partitions.
- Alternate way :
 - Relate different objects, and group them together.

- One way : Manually group objects into partitions.
- Alternate way :
 - Relate different objects, and group them together.
 - Relation should be such that :

 if A is related to B
 and B is related to C,
 then A is related to C.

(Transitivity)

- One way : Manually group objects into partitions.
- Alternate way :
 - Relate different objects, and group them together.
 - Relation should be such that :

 if A is related to B
 and B is related to C,
 then A is related to C.
 - Group related objects into one *partition*.
 - This naturally induces a *partition* over the set.

Solution to the *Infinite Prisoners* Problem.

- Strategy :
 - Let S be the collection of all *binary* sequences.
 - Call two sequences as *related* if they are equal after a certain position.
- For example,

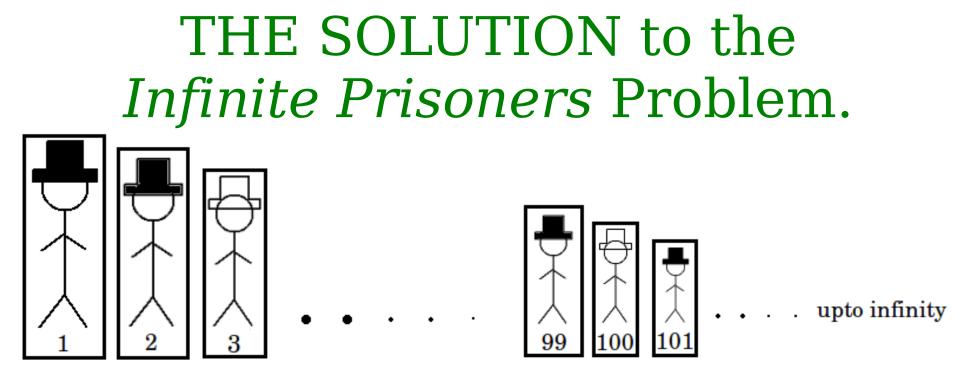
```
100101000000000101001011101101000..... (a) Related Sequences
```

(b) Unrelated Sequences

 $1 \ \text{for every} \ 0; 0 \ \text{for every} \ 1 \\$

Solution to the *Infinite Prisoners* Problem.

- This *relation* satisfies *transitivity* : A is related to B if and B is related to C, then A is related to C. 1001010010000010100101110110100000.... A ~ B 01001001001011001011010010110100..... $A \sim C$ 010010010010110010110100101101001011 R~(101010110101010011101011011000010100
 - This induces *partition* on the set of binary sequences.



- All prisoners meet and decide upon a *choice* from each partition.
- Each prisoner now looking at the sequence in front of him can decide which *partition* this sequence lies in.
- Every prisoner now guesses that colour which he was wearing in the *chosen sequence* from that partition.

So why does this work?

 Since the chosen sequence and the given sequence match after a certain position, all the prisoners after that certain position will be saved!

10010101001000001010010111011010100..... 01001001001011001011010010110100.....

> everybody after a certain position will be saved! That's an infinite number!

So why does this work?

• Even if the person setting up the hats knows the prisoners' strategy, he cannot make the number of people executed, greater than a finite number!

> everybody after a certain position will be saved! That's an infinite number!

Another quote on the Axiom of Choice

• "The Axiom of Choice is obviously true, the Well-Ordering Principle obviously false, and who can tell about Zorn's lemma?"

— Jerry Bona

Questions??