
Some Hardness Escalation Results in

Computational Complexity Theory

by

Pritish Kamath
B.Tech. Indian Institute of Technology Bombay (2012)
S.M. Massachusetts Institute of Technology (2015)

Submitted to Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering & Computer Science

at
Massachusetts Institute of Technology

February 2020

c© Massachusetts Institute of Technology 2019. All rights reserved.

Author: .
Department of Electrical Engineering and Computer Science

September 16, 2019

Certified by: .
Ronitt Rubinfeld

Professor of Electrical Engineering and Computer Science, MIT
Thesis Supervisor

Certified by: .
Madhu Sudan

Gordon McKay Professor of Computer Science, Harvard University
Thesis Supervisor

Accepted by: .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science, MIT
Chair, Department Committee on Graduate Students

Some Hardness Escalation Results in
Computational Complexity Theory

by

Pritish Kamath

Submitted to Department of Electrical Engineering and Computer Science
on September 16, 2019, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science & Engineering

Abstract

In this thesis, we prove new hardness escalation results in computational complexity theory; a
phenomenon where hardness results against seemingly weak models of computation for any problem
can be lifted, in a black box manner, to much stronger models of computation by considering a
simple gadget composed version of the original problem.

For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we
show that a gadget-composed version of F is hard to refute in any proof system whose lines are
computed by efficient communication protocols. This allows us to prove new lower bounds for:

− Monotone Circuit Size : we get an exponential lower bound for an explicit monotone function
computable by linear sized monotone span programs and also in (non-monotone) NC2.

− Real Monotone Circuit Size : Our proof technique extends to real communication protocols,
which yields similar lower bounds against real monotone circuits.

− Cutting Planes Length : we get exponential lower bound for an explicit CNF contradiction
that is refutable with logarithmic Nullstellensatz degree.

Finally, we describe an intimate connection between computational models and communication
complexity analogs of the sub-classes of TFNP, the class of all total search problems in NP. We
show that the communication analog of PPAp captures span programs over Fp for any prime p.
This complements previously known results that communication FP captures formulas (Karchmer–
Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995).

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science, MIT

Thesis Supervisor: Madhu Sudan
Title: Gordon McKay Professor of Computer Science, Harvard University

3

Acknowledgements
I have been very fortunate to be at MIT with great advisors, collaborators, friends and family.

I am extremely grateful to Madhu for taking me as his student, guiding me carefully and helping
me navigate different kinds of situations. Madhu adapted his advising style for me over the years:
very hands on initially, when I was figuring out research areas, but later, encouraging me to pursue
directions on my own with other collaborators. I’m always amazed at Madhu’s profound insights
on virtually any topic; something I’ll greatly miss after MIT.

I have been truly blessed to also have Ronitt as an advisor. Ronitt’s guidance has been very
valuable; she has provided me unconditional support and has been extremely caring and encouraging
in whatever directions I wished to pursue.

The work in this thesis has been a result of guidance I found rather serendipitously. My
initiation to the topics studied in this thesis happened when I started a reading group on query &
communication complexity with Shalev Ben-David and Robin Kothari among others. Later, I had
the opportunity to learn from Raghu Meka, who hosted me at UCLA on two occasions. Raghu’s
clear thinking and emphasis on foundational problems is something I aspire for. I’m also grateful
to Raghu for serving on my committee. Finally, I had the fortune of working with Mika Göös, with
whom all the work in the thesis was done (along with other collaborators). Despite working with
Mika closely for so long, I haven’t been able to fully absorb his graphic design skills, crisp writing
style and bouldering techniques (I can barely complete a V2). I often try to compensate for this by
using Mika’s signature hyperlink style.

I would like to thank all the collaborators I have had the good fortune of working with while at
MIT: Jayadev Acharya, Mohammad Bavarian, Arnab Bhattacharyya, Ankit Garg, Badih Ghazi,
Mika Göös, Bernhard Haeupler, Elad Haramaty, Shen Li, Toniann Pitassi, Prasad Raghavendra,
Ronald Rivest, Robert Robere, Ankit Shah, Julie Shah, Dmitry Sokolov, Katerina Sotiraki, Madhu
Sudan, Ameya Velingker, Tom Watson and Manolis Zampetakis. A special shout-out to Badih, with
whom I have had numerous fruitful collaborations. I’m yet to assimilate Badih’s resourcefulness,
coolness and optimism while facing hard research problems.

MIT is the place it is, primarily because of the amazing people around. I have gained tremen-
dously by interacting with faculty at MIT and I would like to thank Scott Aaronson, Aleksander
Mądry, Dana Moshkovitz and Vinod Vaikuntanathan. I would especially like to thank Costis
Daskalakis for giving me advice on many occasions and also serving on my committee. Finally I’m
very grateful to Yael Kalai for valuable guidance and being such an inspiring source of energy.

I have had excellent and diverse TA opportunities at MIT which have served as valuable learning
experiences and I’m grateful to Dana Moshkovitz, David Karger, Dina Katabi and Piotr Indyk for
providing me the same.

For getting me interested in theoretical research and trying to build some discipline into me, I
would like to thank Supratik Chakraborty, Nutan Limaye and Neeraj Kayal. I would also like to

4

thank Csaba Szepesvári for a wonderful internship opportunity at Google DeepMind.
For making the ToC group such a warm environment for discussions (technically and otherwise)

I would like to thank all my fellow students. There are too many people to thank, so I’ll try
to keep it brief: Michael Forbes, Mohammad Bavarian, Matt Coudron, Alan Guo, Henry Yuen,
John Wright, Robin Kothari, Shalev Ben-David, Badih Ghazi, Gautam “G” Kamath, Maryam
Aliakbarpour, Jerry Li, Mădălina Persu, Luke Schaeffer, Adam Sealfon, Katerina Sotiraki, Prashant
Vasudevan, Prabhanjan Ananth, Akshay Degwekar, Nishanth Dikkala, Govind Ramnarayan, Mano-
lis Zampetakis, Sitan Chen . . . alas, that wasn’t brief and I have still missed so many people.
Additionally I would like to thank the admins Joanne, Rebecca and Debbie for cutting through
all the bureaucracy with a pedestrian sense of ease, making ToC among the most fun groups at
MIT! For making my visits to Harvard fun and enjoyable I would like to thank Mitali Bafna, Elad
Haramaty and Preetum Nakkiran.

For making MIT a home, I would like thank Yashovardhan Chati and Devendra Shelar for
tolerating me as a roommate (and all the fun alley cricket at home, with apologies to people living
downstairs!) and Vaibhav, Divya, Krithika, Rajan, Saurabh, Shilpa, Ranjitha and Parnika for the
never ending conversations on life, universe and everything.

Finally, I would like to thank my family who have raised me up to where I am today. This
includes my parents, mom Urmila and aunt Naina, my brother Sudeep and sister-in-law Swarna
(and a yet-to-arrive young one!). Sudeep has been a constant source of inspiration ever since I was
tiny; he taught me all the important things in life very early on (including topics like combinatorics,
trigonometry and calculus). Finally, I would like to thank my wife Apoorvaa, who brought along
with her very inspiring in-laws Meenal and Chandrahas. I was incredibly lucky to have met
Apoorvaa very early in life and I cannot imagine how life would have been otherwise.

5

Dedicated to the memory of my father, Uday Kamath,
who inspired the mathematical spark in both of his sons.

6

Contents

1 Introduction 2
1.1 Complexity Theory . 3
1.2 Outline of the thesis . 4
1.3 Note on the content of this thesis . 6

2 Complexity Theory Basics 8
2.1 Computational Models . 8
2.2 Propositional Proof Complexity . 11
2.3 Query Complexity . 14
2.4 Communication Complexity . 15
2.5 Query-to-Communication Lifting . 17
2.6 Reductions in Query and Communication . 19

3 Tools for Lifting Theorems 20
3.1 Rectangles are non-negative juntas . 20
3.2 Proof of Full Support Lemma . 22

4 Dag-like Models and Equivalences 26
4.1 Abstract dags . 26
4.2 Concrete dags . 28

4.2.1 Query dags . 28
4.2.2 Communication dags . 29

4.3 Equivalence of Circuits and Communication Dags 31

5 Monotone Circuit Lower Bounds 35
5.1 Rectangle Partitioning Scheme . 36
5.2 Lifting for Rectangle-Dags . 39

5.2.1 Game semantics for dags . 39
5.2.2 Simplified proof . 40
5.2.3 Accounting for error . 42

5.3 Reductions to mKW Search Problems . 43
5.3.1 Generic Reductions . 43
5.3.2 Reductions to Monotone C-Sat . 45

6 Cutting Planes Lower Bounds 49
6.1 Lifting for Triangle-Dags . 50

6.1.1 Triangle partition scheme . 50
6.1.2 Simplified proof . 51

7

6.2 Triangle Partitioning Scheme . 53
6.2.1 Properties of Triangle Scheme . 55
6.2.2 Proof of Triangle Lemma (Lemma 6.4) . 59

6.3 Reductions to CNF Search Problems . 59

7 Monotone Span Program Lower Bounds 63
7.1 Nullstellensatz Lower Bounds . 63
7.2 Lifting Nullstellensatz to Monotone Span Programs 67

8 TFNP in Query & Communication 69
8.1 TFNP Class Definitions . 70
8.2 Characterizations . 75

8.2.1 PPAp, Fp-Nullstellensatz and Fp-Span Programs 75
8.2.2 PLS, Resolution Width and Circuits . 82
8.2.3 Partial Characterizations . 84

8.3 Separations . 85

9 Summary and Open Problems 88
9.1 Lifting Theorems . 88
9.2 Direct Lower Bound Methods . 90
9.3 Characterizations of TFNP sub-classes . 90

1

Chapter 1

Introduction

Understanding computational hardness of problems has been a central theme in computer science,

arguably since the genesis of the field [Chu36, Tur37, Coo71, Kar72]; e.g. the P vs. NP question has

been recognized as a Millenium Prize Problem by the Clay Mathematical Institute [Jaf06]. While

understanding hardness results are philosophically important, they are also relevant practically as

the security of most cryptographic systems are based on the computational hardness of specific

problems. We seem very far from resolving the fundamental questions in complexity theory;

nevertheless the field has made progress on many fronts such as proving some weak complexity

separations (e.g. NQP 6⊆ ACC [Wil11, MW18]) and explicit lower bounds in restricted models (e.g.

against AC0 [Hås86, HRST17], AC0[p] [Raz89, Smo87], monotone circuits [Raz85b, AB87, Tar88],

etc.). The reader is highly encouraged to read the wonderful book by Avi Wigderson [Wig19]

to get an overview of Computational Complexity Theory and its relevance to Computer Science,

Mathematics and beyond.

In this thesis, we develop new hardness escalation results; a phenomenon where hardness results

against seemingly weak models of computation for any problem can be lifted, in a black box manner,

to much stronger models of computation by considering a simple gadget composed version of the

original problem. We prove new lower bounds against a range of monotone computational models

and propositional proof systems. At the heart of our proofs, we exploit connections to query and

communication complexity and our hardness escalation results fall under an emerging paradigm,

that has come to be known as query-to-communication lifting.

2

1.1 Complexity Theory

We briefly describe the different models of complexity theory that we study in this thesis. A more

comprehensive background is provided in Chapter 2.

Monotone Computational Models. Boolean monotone circuits compute on inputs by iter-

atively performing And and Or operations. Real monotone circuits [HC99, Pud97] generalize

monotone circuits by having real valued intermediate computations, where the gates compute

arbitrary monotone functions on its inputs. Monotone span programs [KW93] compute by testing

whether a subspace indicated by the input spans a certain target vector.

Propositional Proof Systems. The goal of propositional proof systems is to prove unsatisfia-

bility of CNFs by deriving a contradiction starting from the given clauses. The Resolution proof

system operates via the resolution rule : (A ∨ x), (B ∨ ¬x) |= (A ∨B) to derive new clauses until a

contradiction is reached. The Cutting Planes proof system is a geometric generalization of Resolu-

tion, where intermediate statements are linear threshold functions. The F-Nullstellensatz proof

system (for any field F) proves the unsatisfiability of a polynomial system {p1 = 0, . . . , pm = 0} by

providing a set of polynomials q1, . . . , qm such that
∑

i piqi = 1 (syntactically over F).

Query Complexity. A decision tree algorithm solves a search problem S ⊆ {0, 1}n ×O on an

unknown input x ∈ {0, 1}n by repeatedly querying input variables. The goal is to find an answer

o ∈ O such that (x, o) ∈ S, while minimizing the number of bits queried. This basic template can

be instantiated in different types of computation (e.g. deterministic, randomized, nondeterministic).

In this thesis, we will invoke close ties between query complexity and proof systems.

Communication Complexity. A communication protocol solves a search problem S ⊆ X×Y×O

on inputs (x, y) that is shared between two players, by exchange of bits between the players. The goal

is to find an answer o ∈ O such that (x, y, o) ∈ S, while minimizing the number of bits exchanged.

Once again, this basic template can be instantiated for different types of computation. In this

thesis, we will invoke close ties between communication complexity and monotone computational

models (cf. [KW88]).

3

1.2 Outline of the thesis

In Chapter 2, we provide an introduction to basic models of computational models, proof systems

and query & communication complexity that are relevant for this thesis. In Chapter 3, we recall

the relevant background from some recent works on query-to-communication lifting theorems.

Chapter 4. Dag-like Models and Equivalences

Dag-like communication protocols [Raz95, Pud10, Sok17], generalize the usual notion of (tree-like)

communication protocols, and captures circuit size, analogous to an equivalence between formulas

and tree-like protocols [KW88]. In particular, the (monotone) circuit complexity of f is equal

to the least size of a dag-like protocol that solves the (monotone) Karchmer–Wigderson search

problem associated with f . Real dag-like communication protocols further generalize the notion of

dag-like protocols. and in turn capture the real monotone circuit size [HP18].

Analogous to decision trees, we define decision dags (or conjunction-dags), which are equivalent

to resolution refutations. Moreover, we also define real decision dags (or threshold-dags), which are

equivalent to cutting planes refutations.

Chapter 5. Monotone Circuit Lower Bounds

In this chapter, we prove a query-to-communication lifting theorem that escalates lower bounds for

decision dags to lower bounds for dag-like communication protocols, thereby yielding monotone

circuit lower bounds. The result can be interpreted as a converse to monotone feasible interpolation

[Kra97, BPR97], which is a popular method to prove Resolution refutation lower bounds for proof

systems by reduction to monotone circuit lower bounds. A theorem of this type was conjectured by

Beame, Huynh and Pitassi [BHP10].

We introduce a natural monotone encoding of constraint satisfaction problems (CSP). An

illustrative example is the monotone encoding of 3Xor-Sat, for which we get an exponential

monotone circuit size lower bound. This result stands in contrast to the fact that 3Xor-Sat is

computable by a linear-size monotone F2-span program and hence is also computable in (non-

monotone) NC2, as there are fast parallel (non-monotone) algorithms for linear algebra [Mul87].

4

Chapter 6. Cutting Planes Lower Bounds

We significantly strengthen the lifting theorem from the previous chapter to real dag-like protocols.

This allows us to get the same qualitative lower bounds against real monotone circuit size, as were

obtained for monotone circuits.

Another application that follows are lower bounds for the (semantic) Cutting Planes proof system

(similar in spirit to monotone feasible interpolation [Kra97]). In particular, for any unsatisfiable

n-variate k-CNF F which requires Resolution width w, we get that a related unsatisfiable nO(1)-

variate 3k-CNF F ′ requires Cutting Planes refutations of length nΩ(w). By instantiating F carefully,

this yields an unsatisfiable CNF that has O(log n)-degree Nullstellensatz refutations, but requires

Cutting Planes refutations of length 2n
Ω(1) .

Chapter 7. Monotone Span Program Lower Bounds

We construct an explicit CNF (via reduction from [BR98]) that has R-Nullstellensatz refutations of

O(1)-degree, but for any prime p, requires Fp-Nullstellensatz refutations of degree nΩ(1).

We combine this with the lifting theorem from Nullstellensatz to Monotone Span programs

[PR18] to get an explict function that has linear-sized monotone span programs over R, but requires

exponential sized monotone span program over Fp for any prime p.

Chapter 8. TFNP in Query & Communication Complexity

We describe an intimate connection between the models studied in this thesis and query &

communication analogs of TFNP, the complexity class of all total search problems in NP.

Communication TFNP. Tree-like protocols are the communication analog of FP, the complexity

class of all search problems solvable in polynomial time on Turing machines. Karchmer and

Wigderson [KW88] characterized (monotone) formulas in terms of communication protocols. Dag-

like communication protocols were introduced by Razborov [Raz95] as the communication analog

of the TFNP-subclass PLS, and he showed that they characterize circuits. We contribute a third

such characterization: We show that the communication analog of PPA captures F2–span programs.

More generally, we show that communication PPAp captures Fp–span programs.

5

Query TFNP. Decision trees are the query analog of FP and they are known to characterize

the depth complexity of resolution refutations [LNNW95]. Additionally, decision-dags capture the

width complexity of resolution refutations [Pud00, AD08] and we show how to view this as a query

analog of PLS. Again, we contribute more such characterizations: the query analog of PPA (resp.

PPAp) captures the degree of Nullstellensatz refutation over F2 (resp. Fp).

Chapter 9 Summary and Open Problems

We highlight some key open problems and future directions in the context of this thesis.

1.3 Note on the content of this thesis

All the work in this thesis is based on prior publications [GGKS18, GKRS19] with co-authors Ankit

Garg, Mika Göös, Robert Robere and Dmitry Sokolov. During the course of Ph.D., the author has

worked on a variety of topics most of which have not been included as they are unrelated to the

theme of this thesis. We briefly mention these lines of work here.

More Complexity & Information Theory

. [GKS16a] : we study the class of permutation-invariant communication problems, and show that

the information complexity and randomized/deterministic communication complexity of all such

functions are polynomially related (upto additive log factors).

. [GHKS17] : we study a setting of message compression in a distributed setting, where the players

don’t know the true message distribution and can learn it only through observed samples.

. [GKS16b, GKR18] : we consider the problem of non-interactive simulation studied in information

theory. We show that the problem of checking whether a given joint distribution can be non-

interactively simulated from another is decidable. A new technique of dimension reduction for

polynomials is introduced (generalizing the Johnson-Lindenstrauss lemma).

. [BGH+16] : we prove that the well-known protocol for correlated sampling is actually optimal.

. [GKPW19] : we prove a query-to-communication lifting theorem for the class PNP.

. [GKSZ19] : In an ongoing work, we study the class PPAq in detail and provide a natural complete

problem for it.

6

Miscellaneous

. [HKV15] : we study the model of (noisy) communication with partial noiseless feedback and

prove lower bounds on achievable rates in deterministic and randomized settings.

. [ABK17] : we study the problem of one-bit compressive sensing, providing improved upper and

lower bounds on the number of measurements required.

. [SKLS18] : in the paradigm of learning from demonstrations, we use a Bayesian inference approach

for infering linear temporal logic (LTL) formulas underlying demonstrations. This project was

implemented in WebPPL, a probabilistic programming language.

7

Chapter 2

Complexity Theory Basics

In this chapter, we give an introduction to computational models and proof systems that we study

in this thesis. We also cover some basics of query and communication complexity. This chapter is

independent of the rest of the thesis and hopes to serve as an introductory reference. For more

details, we refer the reader to the wonderful texts by Jukna [Juk12] and Krajícek [Kra19].

2.1 Computational Models

Circuits & Formulas. A circuit (aka straight-line program) is a basic model of computation that

may be thought of as a “hardware implementation” of an algorithm for a fixed input size. A circuit

is represented as a directed acyclic graph, where there are (i) n nodes of zero in-degree called input

gates (ii) m nodes of zero out-degree called output gates and (iii) all non-input gates g are labeled by

an operation Φg in the chosen basis. The circuit is said to compute a function f : {0, 1}n → {0, 1}m,

such that on a given input z ∈ {0, 1}n corresponding to the n input gates, each non-input gate g

computes the value g(z) = Φg(g1(z), g2(z), . . . , gt(z)) where g1(z), . . . , gt(z) are values computed

by the predecessor gates of g, and finally, f(z) corresponds to the bits computed by the m output

gates. The size of a circuit is the total number of gates1 and its depth is the length of the longest

path from an input to an output gate. A formula is a special case of a circuit, where the directed

acyclic graph is a tree.
1often, size is also defined as the number of “wires”, but these measures are at most quadratically apart.

8

Boolean Circuits & Formulas. A Boolean circuit has operations that belong to the de Morgan

basis {∧,∨,¬} consisting of the logical And, Or and Not operations. It is well known that any

algorithm that, on inputs of length n, runs in time t(n) on a Turing machine can also be simulated

by a Boolean circuit of size O(t(n) log t(n)) (cf. [AB09]). Thus, Boolean circuits serve as a simple

abstraction for potentially understanding computational hardness results.2 The class P/poly is the

set of languages computable by poly-sized family of Boolean circuits, whereas the class NC1/poly

is the set of all languages computable by poly-sized Boolean formulas. For ease of notation, we

assume circuits and formulas to be Boolean by default.

z1 z2

z3

z4

∨

¬

∨

∧

f : {0, 1}4 → {0, 1}

Figure 2.1: Example of a (non-monotone) Boolean formula

Definition 2.1 (Monotone Function). A function f : {0, 1}n → {0, 1} is said to be monotone if

f(x) ≤ f(y) for all x, y ∈ {0, 1}n satisfying x � y (i.e. x is bit-wise dominated by y).

A Boolean circuit/formula is monotone if the gates are labeled by operations in {∧,∨}, i.e. without

Not gates. The set of all monotone circuits precisely compute the set of all monotone functions.

Remark 2.2 (Fan-in of Boolean circuits). While a Boolean circuit is allowed to have unbounded

fan-in, we can always transform them to have fan-in at most 2, by blowing up the size of the circuit

by at most a polynomial factor. In this thesis, we will only consider Boolean circuits with fan-in at

most 2.

2The advent of artificial neural networks makes one wonder whether it serves more than just this purpose.

9

https://en.wikipedia.org/wiki/Artificial_neural_network

Monotone Real Circuits. A monotone real circuit [HC99, Pud97] of fan-in 2 has gates g labeled

by operations Φg : R × R → R that can be arbitrary monotone functions over the reals, that is,

Φg(x1, x2) ≤ Φg(y1, y2) whenever x1 ≤ y1 and x2 ≤ y2 (see [Juk12, §9.6] for exposition). While the

intermediate gates are allowed to compute (monotone) functions g : {0, 1}n → R, we require that

the final output is still Boolean.

It is well known that monotone real circuits can be exponentially more powerful than even

non-monotone Boolean circuits for computing certain functions [Ros97]!3 The original motivation

to study such circuits, and what interests us in this thesis, is that lower bounds for monotone real

circuits imply lower bounds for the Cutting Planes proof system [CCT87] (defined shortly).

Remark 2.3 (Fan-in of monotone real circuits). Monotone real circuits can also be defined with

fan-in k (instead of 2). However unlike Boolean circuits, fan-in reduction for monotone real circuits

is not trivial! In fact, it was only recently shown that any monotone real circuit of size s and

fan-in k can be simulated by a monotone real circuit of size O(s · nk−2) and fan-in 2 [HP18] (an

exponential dependence in k is clearly necessary!).

Span Programs. Span programs are a model of computation introduced by Karchmer and

Wigderson [KW93] (see also [Juk12, §8] for exposition), which are very different than circuits (or

straight-line programs). For any field F, an F-span program is specified by a matrix M ∈ Fm×m′ ,

each row of which is labeled by a literal, zi or ¬zi. We say that the program accepts an input

z ∈ {0, 1}n iff the rows of M whose labels are consistent with z (literals evaluating to True on

z) span the all-1 row vector (see Figure 2.2 for an illustration). The size of a span program is its

number of rows m (it is known that without loss of generality, one can take m′ ≤ m).

A span program is monotone if all its literals are positive; in this case the program computes

a monotone function. Note that a monotone span program computes only monotone functions

because including more rows can only help in spanning the all-1 row vector. In fact, all monotone

functions are computable by monotone span programs. An interesting property of monotone span

programs is that they are exactly equivalent to linear secret sharing schemes in Cryptography.
3another neat observation is that monotone real circuits can simulate all neural networks with non-negative

weights and monotone activations (such as ReLU, sigmoid and tanh).

10

1 0 0 1

1 0 1 0

0 1 1 0

1 0 1 1

z1

z2

z3

¬z1

(a) Span Program

1 0 0 1

1 0 1 0

0 1 1 0

1 0 1 1

z1

z2

z3

¬z1

(b) Accepts on input (1, 0, 1)

1 0 0 1

1 0 1 0

0 1 1 0

1 0 1 1

z1

z2

z3

¬z1

(c) Rejects on input (0, 0, 1)

Figure 2.2: Example of (non-monotone) F2-Span Program

2.2 Propositional Proof Complexity

Propositional proof systems operate on Boolean formulas, the simplest case being CNF formulas,

which is a conjunction (And) of clauses, where each clause is a disjunction (Or) of literals, e.g.

F = (z1 ∨ z2) ∧ (¬z1 ∨ z2) ∧ (¬z2). A CNF formula is said to unsatisfiable if no assignment to its

variables satisfies the formula.

A proof of the unsatisfiability of F starts with clauses of F (called axioms), applies several

simple (fixed set of) rules to produce a contradiction. The main goal of proof complexity is to

show that some unsatisfiable CNF formulas require long/complex proofs — it is well known that

NP = coNP iff there is a propositional proof system giving rise to short (polynomial in size of F)

proofs of unsatisfiability of all unsatisfiable CNF formulas F [CR79].

Resolution. The Resolution proof system, introduced by Blake [Bla38], has become popular as

a theorem-proving procedure, e.g. DPLL due to Davis and Putnam [DP60], Robinson [Rob65] (see

also [Juk12, §18] for exposition). Let F be any unsatisfiable CNF. A Resolution refutation of F is

a sequence of clauses C = (C1, . . . , Ct) where Ct = ⊥ is the empty clause and every Ci is either a

clause of F or is derived from some previous two clauses using the resolution rule:

A ∨ zi B ∨ ¬zi

A ∨B

meaning that the clause A ∨B can be inferred from the clauses A ∨ zi and B ∨ ¬zi. We say that

the variable zi was resolved to derive the clause A∨B. The length of the proof is equal to the total

number of clauses in the proof. The width of the proof is the maximum number of literals present

11

⊥

(z2)

(z1 ∨ z2) (¬z1 ∨ z2) (¬z2)

Resolve z2

Resolve z1

Figure 2.3: Example of a (tree-like) resolution refutation

in any intermediate clause. The resolution width of F is the least width of any resolution refutation

of F . A proof is said to be tree-like if the sequence of derivations form a tree as opposed to a more

general directed acyclic graph.

It is well known that the Resolution proof system is sound and complete, i.e. a CNF is

unsatisfiable iff it is has a resolution refutation.

Cutting Planes. The Cutting Planes proof system originated in the works on integer program-

ming by Gomory [Gom63] and Chvátal [Chv73] and considered as a proof system by Cook, Coullard

and Turán [CCT87]. It is more powerful than the Resolution proof system and can be viewed as a

“geometric generalization” (see [Juk12, §19] for exposition). Given a matrix A ∈ Zm×n and b ∈ Zm,

we say that the system Az ≥ b is unsatisfiable if it has no feasible point z ∈ {0, 1}n. A Cutting

Planes refutation of Az ≥ b is a sequence of linear inequalities L = (L1, . . . , Lt) where Lt is 0 ≥ 1

and every Li is either an inequality in Az ≥ b, or an inequality zi ≥ 0 or −zi ≥ −1 or is derived

from some previous inequalities via one of the following rules (where a ∈ Zn, b, c ∈ Z and c ≥ 1):

a>z ≥ b

c · a>z ≥ c · b

a>1 z ≥ b1 a>2 z ≥ b2

(a1 + a2)>z ≥ b1 + b2

c · a>z ≥ b

a>z ≥ db/ce

The length of the proof is equal to the total number of inequalities in the proof.

In order to refute unsatisfiable CNFs, we can represent a CNF F as a system of linear inequalities

AF z ≥ bF . This is done by representing each clause by an inequality using the translation zi ; zi

and ¬zi ; (1 − zi). For example, z1 ∨ z2 ∨ ¬z3 corresponds to the inequality z1 + z2 − z3 ≥ 0

12

(equivalent to z1 + z2 + (1− z3) ≥ 1). It is easy to see that Cutting Planes can simulate Resolution

as demonstrated by the following example,

z1 ∨ z2 ∨ ¬z3 z1 ∨ z2 ∨ z3

z1 ∨ z2

;
z1 + z2 − z3 ≥ 0 z1 + z2 + z3 ≥ 1

2z1 + 2z2 ≥ 1

and
2z1 + 2z2 ≥ 1

z1 + z2 ≥ 1

While the rules we described above allow us to syntactically derive new inequalities from earlier

ones, a stronger version that is often studied is the semantic Cutting Planes proof system. Here, we

are allowed “derive” an inequality Lk from previous inequalities Li and Lj as long as Lk(z) holds

only if both Li(z) and Lj(z) hold, for all z ∈ {0, 1}n. The restriction on z being in {0, 1}n, makes

it coNP-hard to decide if Lk can be semantically derived from Li and Lj (by a reduction from the

knapsack problem). While semantic Cutting Planes refutation is significantly stronger than the

syntactic version, some proof techniques (including those in this thesis) in fact give lower bounds

on the length of semantic Cutting Planes refutations.

Nullstellensatz. Let P := {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polynomial

equations in F[z1, z2, . . . , zn] for a field F. An F-Nullstellensatz refutation of P is a sequence of

polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that
∑m

i=1 qipi = 1, where the equality is syntactic.

The degree of the refutation is maxi deg(qipi). The F-Nullstellensatz degree of P , denoted by

NSF(P), is the least degree of an F-Nullstellensatz refutation of P . See [Kra19, §16.1] for exposition.

In order to refute unsatisfiable CNFs, we can represent a CNF F as a polynomial system PF .

This is done by representing each clause containing k literals as a degree k polynomial using the

translation zi ; (1−zi) and ¬zi ; zi. For example, (z1∨¬z2∨¬z3) corresponds to the polynomial

(1− z1)z2z3 = 0. In the case of F 6= F2, we also include the Boolean axioms z2
i − zi = 0. For ease of

notation, we use NSF(F) to denote NSF(PF).

Example. Let F = (z1 ∨ z2) ∧ (¬z1 ∨ z2) ∧ (¬z2) encoded as a polynomial system P =

{p1 := (1− z1)(1− z2) = 0, p2 := z1(1− z2) = 0, p3 := z2 = 0}. A F-Nullstellensatz refutation (for

any F) of P with degree 2 is simply q1 := 1, q2 := 1 and q3 := 1, since, p1q1 + p2q2 + p3q2 = 1.

13

Remark 2.4 (CNF vs CSP). We would often talk about refuting a constraint satisfaction problem

(CSP), where the constraints can come from an general set of predicates. The implicit understanding

would be that we refute the natural CNF-encoding of the CSP. Eg. z1⊕ z2⊕ z3 = 0 can be encoded

as (¬z1 ∨ ¬z2 ∨ ¬z3) ∧ (¬z1 ∨ z2 ∨ z3) ∧ (z1 ∨ ¬z2 ∨ z3) ∧ (z1 ∨ z2 ∨ ¬z3).

2.3 Query Complexity

The basic objects of study in query complexity are decision trees. For an n-bit boolean function

f : {0, 1}n → {0, 1}, a decision tree algorithm on an unknown input z ∈ {0, 1}n, repeatedly queries

individual input variables. In each step, the algorithm specifies a coordinate i ∈ [n] and gets to

learn zi ∈ {0, 1}. The key question is: How many queries are needed to evaluate f?

This basic template can be instantiated for many different types of computation such as

deterministic, nondeterministic, randomized, etc. While the holy grail of complexity theory is to

prove separations between different Turing machine based computational models (e.g., P 6= NP),

these questions remain hopelessly out of reach. Query complexity originated in the context

of separating complexity classes relative to oracles, starting from the work of Baker, Gill and

Solovay [BGS75]; see Vereshchagin [Ver99] for an exposition. Buhrman and de Wolf [BdW02] and

Jukna [Juk12] have excellent surveys on query complexity.

In this thesis, we will primarily consider search problems S ⊆ {0, 1}n × O (also known as

relational problems). Here the goal of a decision tree algorithm is to output any o ∈ S(z) :=

{o ∈ O : (z, o) ∈ S} if it exists or ⊥ if S(z) = ∅. In fact, we will only consider total search problems,

where S(z) 6= ∅ for all z ∈ Z. For any search problem S, we denote it’s deterministic decision

tree complexity by FPdt(S). We use this (rather unusual) notation to draw a parallel between

deterministic query complexity and the Turing machine complexity class FP — this analogy is

elaborated on in Chapter 8.

CSP search problems. In this thesis, we will exploit an intimate connection between query

complexity and proof complexity for which, we will consider a canonical search problem associated

to any unsatisfiable n-variate CNF. More generally, we define it for any CSP.

14

Definition 2.5 (CSP Search Problems). For any unsatisfiable CSP F =
∧
i∈[m] Di, the CSP search

problem S(F) ⊆ {0, 1}n × [m] is defined as,

Input: an n-variate truth assignment z ∈ {0, 1}n

Output: i ∈ [m] such that constraint Di of F is falsified by z (i.e., Di(z) = 0)

2.4 Communication Complexity

In the basic model of communication complexity, introduced by Yao [Yao79], two players Akbar and

Birbal4 share the input to a function f : {0, 1}n × {0, 1}n → {0, 1}, where Akbar holds x ∈ {0, 1}n

and Birbal holds y ∈ {0, 1}n. The wish to compute the value f(x, y) by communicating with each

other. The key question is: How many bits of communication are needed to compute f?

As with query complexity, this basic template can be instantiated for many different types

of computation such as deterministic, nondeterministic, randomized, etc. Despite it’s simplicity,

communication complexity is reputed for being vastly powerful in the study of many diverse areas

within complexity theory. Quoting Avi Wigderson [Wig19, Chapter 15], “communication is an

important computational resource in distributed systems – but in [several] applications through

simple or subtle reductions it informs us about other computational resources like time, space, size,

randomness, queries, chip area and more”. Several textbooks have been dedicated to the study of

communication complexity and its applications [KN97, LS09, RY17].

In this thesis, as with query complexity, we will primarily consider search problems S ⊆

X × Y × O. Here, Akbar holds x ∈ X , Birbal holds y ∈ Y and they wish to output any

o ∈ S(x, y) := {o ∈ O : (x, y, o) ∈ S} if it exists or ⊥ if S(x, y) = ∅. As in query complexity, we

will only consider total search problems, where S(x, y) 6= ∅ for all (x, y) ∈ X × Y. For any search

problem S, we denote it’s deterministic communication complexity by FPcc(S), drawing an analogy

with the Turing machine complexity class FP.
4Akbar was the third Mughal emperor (1556-1605) of India. Birbal was Akbar’s advisor and main commander of

the army. Akbar & Birbal are part of many Indian folk tales, which focus primarily on Birbal’s sharp wit.

15

https://en.wikipedia.org/wiki/Akbar
https://en.wikipedia.org/wiki/Birbal

Karchmer-Wigderson search problems. In a seminal work, Karchmer and Wigderson [KW88]

established an equivalence between the (monotone) circuit-depth complexity of a (monotone)

function f : {0, 1}n → {0, 1} and the communication complexity of the so-called (monotone)

Karchmer–Wigderson search problem defined as follows.

Definition 2.6 (Karchmer-Wigderson search problem). For any (monotone) function f : {0, 1}n →

{0, 1}, the search problem KW(f) ⊆ f−1(1)× f−1(0)× [n] (resp. mKW(f)) is defined as,

Input: (x, y) ∈ f−1(1)× f−1(0)

Output: i ∈ [n] such that xi 6= yi (resp. xi > yi)

Theorem 2.7 ([KW88]). For any function f : {0, 1}n → {0, 1},

FPcc(KW(f)) = circuit depth of f

FPcc(mKW(f)) = monotone circuit depth of f (for monotone f)

This characterization was used to prove an Ω(log2 n) lower bound on the circuit depth of the

monotone function s-t-Connectivity, the problem of deciding if a given graph (as an adjacency

matrix) has a path between designated nodes s and t. This implies an nΩ(logn) lower bound on the

size of monotone formulas computing s-t-Connectivity, due to the following lemma.

Lemma 2.8. For any f : {0, 1}n → {0, 1}, the (monotone) circuit depth of f is equal, upto constant

factors, to the log of the (monotone) formula size of f .

Theorem 2.7 has had a tremendous influence in the area of proving formula lower bounds.

Karchmer, Raz and Wigderson [KRW95] formulated a direct-sum type conjecture in communication

complexity, which implies P 6⊆ NC1 — this conjecture has come to be known as the KRW conjecture.

While this still remains open, the best known (non-monotone) formula lower bound of n3−o(1) has

been obtained via this approach [DM18], although there have been alternative approaches as well.

There has been much more progress on the front of proving monotone formula size lower bounds.

Raz and Wigderson [RW92] showed that the Perfect-Matching function on a graph of size n

requires monotone formulas of size 2Ω(n) (note: this is 2Ω(
√
N) where N :=

(
n
2

)
is the number of

variables). A fundamental result, very relevant to this thesis, is due to Raz and McKenzie [RM99],

16

who showed that for all i ≥ 1, monotone-NCi+1 6⊆ monotone-NCi. More importantly, this result

kick-started the paradigm of query-to-communication lifting that we further explore in this work.

By now, near-maximal lower bounds are known on the monotone formula size of explicit functions:

Göös and Pitassi [GP18b] showed a lower bound of 2Ω(n/ logn) for an explicit function in NP. A

lower bound of 2Ω(n) can be recovered from the result of Pitassi and Robere [PR18] for an explicit

function in P and a lower bound of 2Ω(n/polylog n) can be recovered from an upcoming result of de

Rezende et al. [dRMN+19] for an explicit function in monotone-P.

2.5 Query-to-Communication Lifting

It is easy to see that communication protocols are at least as powerful as decision trees (where, we

assume the input {0, 1}n is partitioned between Akbar and Birbal according to a fixed partition). A

decision tree that solves a search problem S ⊆ {0, 1}n×O using at most d queries can be simulated

by a protocol that communicates at most d bits: a query to the i-th coordinate is simulated by

having the player holding xi send that bit to the other player.

The goal of a lifting theorem is to prove a converse. The template of a lifting theorem uses the

following two-step strategy for proving lower bounds against communication protocols:

Step 1: Prove a simulation theorem showing that for a large class of communication problems S̃,

any communication protocol for S̃ can be efficiently simulated by a decision tree solving

a related problem S.

Step 2: Show that decision trees solving S require high cost.

S

z1 z2 z3 z4 z5

S ⊆ {0, 1}n ×O

;

S

g

x1 y1

g

x2 y2

g

x3 y3

g

x4 y4

g

x5 y5

S ◦ gn ⊆ X n × Yn ×O

Figure 2.4: Composed search problem S ◦ gn, where S ⊆ {0, 1}n ×O is an arbitrary n-bit search
problem and g : X × Y → {0, 1} is a carefully chosen two-party gadget.

17

In particular, we consider the family of composed (or lifted) search problems of the form

S̃ := S ◦ gn where g : X × Y → {0, 1} is a carefully chosen two-party gadget; see Figure 2.4. Here,

Akbar and Birbal are given inputs x ∈ X n and y ∈ Yn respectively and their goal is find any valid

solution o ∈ S̃(x, y), where the composed relation S̃ is defined as,

S̃(x, y) := S
(
g(x1, y1), . . . , g(xn, yn)

)
.

Intuitively, the difficulty in solving S ◦ gn arises from the fact that for any i, the i-th input bit

zi := g(xi, yi) to S is unknown to either party until they communicate sufficient information about

xi and yi. This intuition is wrong in general for arbitrary gadgets — a simple counter-example is S

being the n-bit parity function and g being the two-bit parity gadget. The goal of a simulation

theorem is to show that for a careful choice of g, there is no better way for a protocol to solve

S ◦ gn other than to behave like a decision tree querying input bits of f . The first such result

was proved by Raz and McKenzie [RM99] for deterministic query and communication complexity.

A canonical choice for the gadget g is the Indexing gadget Indm : [m]× {0, 1}m → {0, 1} where

Indm(x, y) = yx, since any other gadget can be embedded into the Indexing gadget.

Theorem 2.9 ([RM99]). Let m = m(n) := n∆ for ∆ ≥ 20. For any S ⊆ {0, 1}n ×O,

FPcc(S ◦ Indnm) = Θ(FPdt(S) · log n).

This paradigm has since been very successful, and lifting theorems have been proven for a

variety of query and communication measures, yielding applications in diverse fields such as graph

theory, learning theory (dimension complexity), combinatorial optimization (LP and SDP extended

formulations), monotone computational complexity and proof complexity — we’ll see applications

in the last two categories in this thesis. See Table 2.1 for an overview of these lifting theorems.

18

M Query Communication

P Deterministic Deterministic
[RM99, GPW15, dRNV16]

[WYY17, CKLM17]

BPP Randomized Randomized [GPW17]

NP Nondeterministic Nondeterministic [GLM+16, Göö15]

many Polynomial degree Rank [SZ09, She11, RS10]

many Conical junta degree Nonnegative rank [GLM+16, KMR17]

PNP Decision lists Rectangle overlays [GKPW19]

PLS Decision dags Rectangle dags Chapter 5

PPA Nullstellensatz Algebraic tiling [PR18]

Sherali–Adams LP extension complexity [CLRS13, KMR17]

Sum-of-squares SDP extension complexity [LRS15]

Table 2.1: Notable query-to-communication lifting theorems.

2.6 Reductions in Query and Communication

In order to translate lower bounds on query (or communication) complexity of one search problem

to lower bounds for another, we will use the following notion of reductions.

Query Reduction. A search problem S ⊆ {0, 1}n ×O k-reduces to S ′ ⊆ {0, 1}m ×O′ if there

exists maps f : {0, 1}n → {0, 1}m and φ : O′ → O such that, each bit of f(z) can be computed

by a depth-k decision tree on z and o′ ∈ S ′(z) =⇒ φ(o′) ∈ S(z). Given any type of decision

tree for S ′, we can run it on input f(z), find a solution o ∈ S ′(z) and thereby obtain φ(o) ∈ S(z).

Thus, Mdt(S) ≤ k ·Mdt(S ′) for any query complexity measure Mdt. In this thesis, we only consider

reductions with k = 1, so we simply use the term reduces instead of 1-reduces.

Communication Reduction. A search problem S ⊆ X × Y ×O reduces to S ′ ⊆ X ′ × Y ′ ×O′

if there exists maps f : X → X ′, g : Y → Y ′ and φ : O′ → O such that, o ∈ S ′(f(x), g(y)) =⇒

φ(o) ∈ S(x, y). Given any type of protocol for S ′, Akbar and Birbal can locally map their inputs to

(f(x), g(y)), run the protocol for S ′ to identify o′ ∈ S ′(f(x), g(y)) and thereby get φ(o′) ∈ S(x, y).

Thus, Mcc(S) ≤ Mcc(S ′) for any communication complexity measure Mcc.

19

Chapter 3

Tools for Lifting Theorems

In this chapter, we define some basic notations that we will use throughout this thesis. In addition,

we also recall the key technical notions from prior works [GLM+16, GPW17] that are relevant for

proving our lifting theorems.

Basic Notations. We always write random variables in bold (e.g. x,y). We will use the gadget

g := Indm : [m]× {0, 1}m → {0, 1} and G := gn : [m]n × {0, 1}mn → {0, 1}n denotes n copies of g.

Capital letters X, Y usually denote sets (e.g. subsets of inputs to G) and boldface X denotes a

random variable uniformly distributed over X. We will always assume that m ≥ n∆ for ∆ ≥ 20.

(∆ could be taken to be even smaller, but our focus is not on getting the tightest parameters.)

3.1 Rectangles are non-negative juntas

We explain how large rectangles in G’s domain are related with large subcubes in G’s codomain, as

was first done in the foundational work of [GLM+16] (for g : {0, 1}b × {0, 1}b → {0, 1} being the

inner product gadget on b = O(log n) bits). However, as mentioned before, in our applications we

will work with the Indexing gadget, the corresponding tools for which were introduced by [GPW17].

(Proving our theorems with the inner product gadget on O(log n) bits remains an interesting open

problem!)

20

For a partial assignment ρ ∈ {0, 1, ∗}n we let free ρ := ρ−1(∗) denote its free coordinates, and

fix ρ := [n] r free ρ denote its fixed coordinates. The number of fixed coordinates |fix ρ| is the width

of ρ. Width-d partial assignments are naturally in 1-to-1 correspondence with width-d conjunctions:

for any ρ we define Cρ : {0, 1}n → {0, 1} as the width-|fix ρ| conjunction that accepts an x ∈ {0, 1}n

iff x is consistent with ρ. Thus C−1
ρ (1) = {x ∈ {0, 1}n : xi = ρi for all i ∈ fix ρ} is a subcube.

Definition 3.1. Any set T ⊆ [m]n × {0, 1}mn is ρ-like if the image of T under G is precisely the

subcube of n-bit strings consistent with ρ. In short,

T is ρ-like ⇐⇒ G(T) = C−1
ρ (1).

For a random variable x we let H∞(x) := minx log(1/Pr[x = x]) denote the usual min-entropy of

x. When x ∈ [m]J for some index set J , we write xI ∈ [m]I for the marginal distribution of x on a

subset I ⊆ J of coordinates.

Definition 3.2 ([GLM+16]). A random variable x ∈ [m]J is δ-blockwise-dense (δ-dense for short)

if for every non-empty I ⊆ J , xI has min-entropy rate ≥ δ, that is, H∞(x) ≥ δ · |I| logm.

Definition 3.3 ([GLM+16, GPW17]). Rectangle R := X × Y ⊆ [m]n × {0, 1}mn is ρ-structured if

1. Xfix ρ is fixed : ∃ {x∗i : i ∈ fix ρ} such that, xi = x∗i for each x ∈ X and i ∈ fix ρ.

2. Xfree ρ is 0.9-dense.

3. every z ∈ G(R) is consistent with ρ : G(R) ⊆ C−1
ρ (1), that is, g(xi, yi) = ρi for each i ∈ fix ρ.

4. Y is large enough: H∞(Y) ≥ mn− n3.

An intuitive interpretation that is useful to keep in mind is that if a rectangle R is ρ-structured

then it means that in narrowing down from [m]n × {0, 1}mn to R, Akbar and Birbal have “queried”

z := G(x, y) all the coordinates in fix ρ and found it to be consistent with ρ, but have communicated

“very little information” about the coordinates in free ρ so that they have no clue about the value of

zfree ρ (for z ∈ G(R)). The following lemma formalizes this intuition.

Lemma 3.4 ([GKPW19, GPW17]). For m ≥ n∆, every ρ-structured rectangle is ρ-like.

21

We will however need a slight strengthening of Lemma 3.4, that for a ρ-structured R, in fact there

is a single row of R that is already ρ-like.

Lemma 3.5 (Full Support Lemma). Let X × Y be ρ-structured. For m ≥ n∆, there exists x ∈ X

such that {x} × Y is ρ-like.

We prove this lemma in the next section. The details of the proof are not relevant for the rest of

the thesis, so the reader could feel free to skip the rest of this chapter.

We remark that the only reason why our lifting theorems require a gadget size of m ≥ n∆ is

because of Lemma 3.5.

3.2 Proof of Full Support Lemma

We prove Lemma 3.5, which is a strengthening of Lemma 3.4 that was first proved in [GPW17].

For sake of completeness, we provide a direct self-contained proof of Lemma 3.5.

We first recall a simple claim from [GPW17] (also providing a proof for completeness). In what

follows, let χ(z) := (−1)
∑
i zi be the Parity function.

Claim 3.6 (cf. [GPW17, Lemma 9]). If a random variable z over {0, 1}n satisfies |E[χ(zI)]| ≤

n−2|I| for every nonempty I ⊆ J (for any J ⊆ [n]), then zJ has full support over {0, 1}J .

Proof. For ease of notation let J = [n]. We can write D(z) := Pr[z = z] in the Fourier basis as,

D(z) =
∑
I⊆[n]

D̂(I)χ(zI),

where D̂(I) := 2−n ·
∑

zD(z)χ(zI) = 2−n · Ez∼D χ(zI) is the Fourier coefficient corresponding to

subset I. The condition on random variable z implies that for each I, |D̂(I)| ≤ 2−n · n−2|I|. Thus,

for any z ∈ {0, 1}n, we have that,

|D(z)− 2−n| ≤
∑
I⊆[n]

|D̂(I)| ≤
n∑
k=1

(
n

k

)
· n−2k · 2−n ≤ 2−n ·

n∑
k=1

n−k ≤ 2

n
· 2−n

Thus, D(z) ≥
(
1− 2

n

)
· 2−n > 0 for each z and hence z has full support.

22

To prove Lemma 3.5 we need to show that for any ρ-structured X × Y , there exists x ∈ X such

that G({x} × Y) = C−1
ρ (1). By Claim 3.6, it suffices to show that there exists an x ∈ X such that,

∀I ⊆ free ρ, I 6= ∅ :

∣∣∣∣EY

[
χ(gI(xI ,YI))

]∣∣∣∣ ≤ n−2|I|

Let’s call an x satisfying the above as good. In order to prove that there exists a good x, we use a

claim from [GPW17] (which was used to prove Lemma 3.4), but in a slightly strengthened form.

Claim 3.7 (Strengthening [GPW17, Lemma 8]). For any ρ-structured X×Y with free ρ =: J ⊆ [n],

∀I ⊆ J, I 6= ∅ : E
X

∣∣∣∣E
Y

[
χ(gI(XI ,YI))

]∣∣∣∣ ≤ n−4|I|.

Before proving Claim 3.7, we first show how this enables us to prove Lemma 3.5. By applying

Markov’s inequality to Claim 3.7, we have for a uniform random x ∼ X and any ∅ 6= I ⊆ J that

Pr
x∼X

[∣∣∣∣EY [χ(gI(xI ,YI))]

∣∣∣∣ > n−2|I|
]
≤ n−2|I|.

Taking a union bound over all non-empty I ⊆ J , we get

Pr
x∼X

[x is not good] ≤
∑
∅6=I⊆J

Pr
x∼X

[∣∣∣∣EY [χ(gI(xI ,YI))]

∣∣∣∣ > n−2|I|
]

≤
∑
∅6=I⊆J

n−2|I| =

|J |∑
d=1

(
|J |
d

)
· n−2d

≤
|J |∑
d=1

n−d ≤ 2

n
.

Hence most x ∈ X are good. This completes the proof of Lemma 3.5, except the proof of Claim 3.7,

which we now prove. This strengthened version is in fact already implicit in the original proof of

Lemma 3.4 [GPW17]. For completeness, we describe a short and elegant proof given by Xinyu

Wu [Wu17] and also independently by James Lee, Raghu Meka and Thomas Vidick [LMV17]. The

author is grateful to Xinyu and Raghu for allowing him to include their proof in this thesis.

We prove a more tunable claim from which we can recover Claim 3.7 by setting parameters.

23

Claim 3.8 (Tunable version of Claim 3.7). For any rectangle X × Y ⊆ [m]k × {0, 1}mk such that

H∞(X) ≥ δk logm and H∞(Y) ≥ mk − s

E
X

∣∣∣∣E
Y

[
χ(gk(X,Y))

]∣∣∣∣ ≤ 4
(s

mδ/2

)k
Proof. Let P (x) := Pr[X = x], Q(y) := Pr[Y = y] and N := mk. We will interpret y ∈ Y as a

vector in {0, 1}N indexed by tuples in [k] × [m]. Define F : {0, 1}N → R as F (y) := 2N · Q(y).

Thus, Ey∼UN [F (y)] = 1 where UN is the uniform distribution on {0, 1}N , and F (y) ≤ 2s for all y.

For any x ∈ X, we have EY G(x,Y) = E[χ(YSx)], where Sx = {(i, xi) : i ∈ [k]}. Observe that

for any S ⊆ [N], we have the Fourier coefficient F̂ (S) = E[χ(YS)]. Thus,

E
X

∣∣∣∣E
Y
χ(G(X,Y))

∣∣∣∣ =
∑
x∈X

P (x)

∣∣∣∣F̂ (Sx)

∣∣∣∣
≤

(∑
x∈X

P (x)2

)0.5

·

(∑
x∈X

F̂ (Sx)
2

)0.5

≤ m−δk/2 ·

(∑
S⊆[N]
|S|=n

F̂ (S)2

)0.5

(3.1)

where, in the last inequality, we use that H∞(X) ≥ δk logm and we sum over all Fourier coefficients

corresponding to subsets of size n instead of summing over only subsets S which correspond to

some x.

We use tools from Fourier analysis, namely the Bonami-Beckner noise operator and the Hy-

percontractivity lemma. See [O’D14] for a detailed exposition on these tools. Let Tρ be the

Bonami-Beckner noise operator, given as, Tρf(y) = Ey′∼Nρ(y)[f(y′)] where Nρ(y) is the distribution

over {0, 1}N such that all coordinates y′i are independent and satisfy Pr[y′i = yi] = (1 + ρ)/2. The

p-norm of f : {0, 1}N → {0, 1} is defined as ‖f‖p = (Ey∼UN f(y)p)1/p. We use the following two

properties of the Tρ operator:

(1) Parseval’s identity. Tρf(y) =
∑

S⊆[N] ρ
|S|f̂(S)χ(yS). Hence ‖Tρf‖2

2 =
∑

S⊆[N]

ρ2|S|f̂(S)2.

(2) Hypercontractivity Lemma. ‖Tρf‖2 ≤ ‖f‖p for ρ =
√
p− 1.

24

From (1), we have for any ρ =
√
p− 1

∑
S⊆[N]
|S|=k

F̂ (S)2 ≤ ρ−2k · ‖TρF‖2
2 (3.2)

From (2), we have that,

‖TρF‖2
2 ≤ ‖F‖2

p =

(
E

y∼UN
F (y)p

)2/p

≤ ‖F‖2(p−1)/p
∞ · E

y∼UN
F (y) ≤ 22s(p−1)/p (3.3)

where the last inequality uses that ‖F‖∞ ≤ 2s and that Ey∼UN F (y) = 1.

Putting together Equation 3.1, 3.2 and 3.3, and setting p = s/(s− 1), we get,

E
X

∣∣∣∣E
Y
G(X,Y)

∣∣∣∣ ≤ m−δk/2 · (p− 1)−k · 22s(p−1)/p

< 4
(s

mδ/2

)k
.

Proof of Claim 3.7. For each non-empty I ⊆ J := free ρ, we invoke Claim 3.8 with parameters k =

|I|, s = n3 and δ = 0.9 applied to the marginal distributions (XI ,YI). It follows from 0.9-dense-ness

of X that H∞(XI) ≥ 0.9|I| logm. We also have that H∞(YI) ≥ H∞(Y)−m(n− |I|) ≥ m|I| −n3.

Thus all requirements of Claim 3.8 are met. By taking m ≥ n20 we indeed have the claim as desired,

since s
mδ/2

< n−4

4
.

25

Chapter 4

Dag-like Models and Equivalences

In this chapter, we introduce dag-like models in query and communication complexity and describe

their connections to proof complexity and monotone computational complexity respectively.

We define all query and communication models as solving search problems, defined by a

relation S ⊆ I × O, for some finite input and output sets I and O. On input z ∈ I the search

problem is to find some output in S(z) := {o ∈ O : (z, o) ∈ S}. For convenience, we also define

S−1(o) := {z ∈ I : (z, o) ∈ S}.

In this thesis, we always assume that S is total so that S(z) 6= ∅ for all z ∈ I. In particular, we

will consider CSP search problems (Definition 2.5) in the query model and monotone Karchmer–

Wigderson search problems (Definition 2.6) in the communication model.

4.1 Abstract dags

To motivate our definition of a dag-model, we first abstractly formalize “line-based” proof sys-

tems, parameterized by a family of functions G to which each line of the proof belongs. For

example, as we will see later in more detail, in the case of Resolution refutations, we have

G = {clauses over literals z1, . . . , zn} and in the case of Cutting Planes refutations, we have

G = {linear threshold functions over z1, . . . , zn}.

26

Definition 4.1 (Bottom-up definition). Let G be a family of functions {0, 1}n → {0, 1}. A

(semantic) G-refutation of an n-variable CNF contradiction F =
∧
i∈[m] Di is a directed acyclic

graph of fan-out ≤ 2 where each node (or line) v is associated with a function gv ∈ G satisfying the

following:

1. Root: There is a distinguished root node r (fan-in 0), and gr ≡ 0 is the constant 0 function.

2. Non-leaves: For each non-leaf node v with children u,w, we have g−1
v (1) ⊇ g−1

u (1) ∩ g−1
w (1).

3. Leaves: Each leaf node v is labeled with a clause D of F such that g−1
v (1) ⊇ D−1(1).

The length (or size) of a G-refutation is its number of nodes. We will instead work with a top-down

definition of dag-like models where the goal is solve total search problems. This definition has two

benefits: (i) we get an “algorithmic interpretation” of a proof of refutation and (ii) generalizes to

arbitrary total search problems in both query and communication models.

A version of the following definition (with a specialized F) was introduced by [Raz95] and

subsequently simplified in [Pud10, Sok17].

Definition 4.2 (Top-down definition). Let F be a family of functions I → {0, 1}. An F-dag

solving S ⊆ I ×O is a directed acyclic graph of fan-out ≤ 2 where each node v is associated with

a function fv ∈ F (we call f−1
v (1) the feasible set for v) satisfying the following:

1. Root: There is a distinguished root node r (fan-in 0), and fr ≡ 1 is the constant 1 function.

2. Non-leaves: For each non-leaf node v with children u,w, we have f−1
v (1) ⊆ f−1

u (1) ∪ f−1
w (1).

3. Leaves: Each leaf node v is labeled with an output ov ∈ O such that f−1
v (1) ⊆ S−1(ov).

If we specialize S to be a CSP Search Problem S(F) for an unsatisfiable CNF F =
∧
iDi, the

above specializes to the bottom-up definition of G-refutations for G := {¬f : f ∈ F}, that is, a

proof system whose lines belong to the family of negations of functions in F .

The size of an F-dag is its number of nodes. For convenience, we will often define top-

down dags by associating each node v with a feasible set Rv and it should be understood that

fv(z) := 1 {z ∈ Rv} is the indicator function of Rv.

27

⊥

(x2)

(x1 ∨ x2) (¬x1 ∨ x2) (¬x2)

Resolve x2

Resolve x1

Resolution proof : Bottom-up definition

>

(¬x2)

x2 = 0

(¬x1 ∧ ¬x2)

x1 = 0

(x1 ∧ ¬x2)

x1 = 1

(x2)

x2 = 1

Query x2

Query x1

Conjunction-dag : Top-down definition

Figure 4.1: Two equivalent ways to view a Resolution refutation, illustrated in the tree-like case
(see [Juk12, §18.2] for more discussion of the tree-like case).

4.2 Concrete dags

We now instantiate the abstract model for the purposes of query and communication complexity. In

query complexity, the input domain of the search problem is I = {0, 1}n, whereas in communication

complexity, there is a fixed factorization of the input domain as I = X × Y .

4.2.1 Query dags

Conjunction-dags (essentially Resolution). Consider the n-bit input domain I := {0, 1}n

and let F be the set of all conjunctions of literals over the n input variables. Call such F-dags

simply conjunction-dags. We define the width of a conjunction-dag Π as the maximum width of a

conjunction associated with a node of Π. For a search problem S ⊆ {0, 1}n ×O we define

conj-dag(S) := least size of a conjunction-dag that solves S,

w(S) := least width of a conjunction-dag that solves S.

It is evident from the equivalence between bottom-up and top-down definitions of dags in the

context of CNF search problems S = S(F), that conjunction-dags are equivalent to Resolution

refutations; see also Figure 4.1. Indeed, conj-dag(S(F)) is just the Resolution refutation length

complexity of F , and w(S(F)) is the Resolution width complexity of F (cf. [BW01]).

28

Threshold-dags (essentially Cutting Planes). Consider the n-bit input domain I := {0, 1}n

and let F be the set of all linear threshold functions of literals over the n input variables, that is,

each f ∈ F is defined by some (n+ 1)-tuple a ∈ Rn+1 so that f(x) = 1 iff
∑

i∈[n] aixi > an+1. Call

such F -dags simply threshold-dags. For a search problem S ⊆ {0, 1}n ×O we define

thresh-dag(S) := least size of a threshold-dag that solves S.

Similar to the case of Resolution, in the context of CNF search problems S = S(F), threshold-

dags are equivalent to (semantic) Cutting Planes refutations. That is, thresh-dag(S(F)) is just the

(semantic) Cutting Planes refutation length complexity of F .

Lemma 4.3 (Query dags and Proof systems). For all unsatisfiable CNFs F ,

1. w(S(F)) = Resolution-width(F)

2. conj-dag(S(F)) = Resolution-length(F)

3. thresh-dag(S(F)) = Cutting-Planes-length(F)

4.2.2 Communication dags

Rectangle-dags (dag-like protocols). Consider a bipartite input domain I := X × Y so

that Akbar holds x ∈ X , Birbal holds y ∈ Y, and let F be the set of all indicator functions of

(combinatorial) rectangles over X × Y (sets of the form X × Y with X ⊆ X , Y ⊆ Y). Call such

F-dags simply rectangle-dags. For a search problem S ⊆ X × Y ×O we define its rectangle-dag

complexity by

rect-dag(S) := least size of a rectangle-dag that solves S.

In circuit complexity, a straightforward generalization of the Karchmer–Wigderson depth

characterization [KW88] shows that the monotone circuit complexity of any monotone function f

equals rect-dag(mKW(f)) (cf. [Pud10, Sok17]). For completeness, we provide a proof in Lemma 4.4.

In proof complexity, a useful-to-study semantic proof system is captured by Fc-dags solving CNF

search problems S(F) where Fc is the family of all functions X ×Y → {0, 1} (where X ×Y = {0, 1}n

corresponds to a bipartition of the n input variables of S(F)) that can be computed by tree-like

29

(a) (b)

Figure 4.2: We study communication dags whose feasible sets are (a) rectangles or (b) triangles. In
(b), the rows are sorted in decreasing order of aT while columns, in increasing order of bT .

protocols of communication cost c, say for c = polylog(n). Such a proof system can simulate other

systems (such as Resolution and Cutting Planes with bounded coefficients), and hence lower bounds

against Fc-dags imply lower bounds against other concrete proof systems. Moreover, any Fc-dag

can be simulated by a rectangle-dag with at most a factor 2c blow-up in size, and hence we do not

lose in generality by studying only rectangle-dags.

Triangle-dags. For a bipartite input domain I := X × Y and let F be the set of all indicator

functions of (combinatorial) triangles over X × Y ; here a triangle T ⊆ X × Y is a set that can be

written as T = {(x, y) ∈ X × Y : aT (x) > bT (y)} for some labeling of the rows aT : X → R and

columns bT : Y → R by real numbers; see Figure 4.2b. In particular, every rectangle is a triangle.

Call such F -dags simply triangle-dags. For a search problem S ⊆ X × Y ×O we define

tri-dag(S) := least size of a triangle-dag that solves S.

Hrubeš and Pudlák [HP18] showed recently that the monotone real circuit complexity of an f

equals tri-dag(mKW(f)); for completeness we provide a proof in Lemma 4.4.

Lemma 4.4 (Communication dags and Circuits). For all monotone f : {0, 1}n → {0, 1},

1. rect-dag(mKW(f)) = monotone circuit size(f), and

rect-dag(KW(f)) = Θ(circuit size(f)).

2. tri-dag(mKW(f)) = monotone real-circuit size(f).

The complexity measures introduced so far are related as follows; here S ′ is any two-party version

30

of S obtained by choosing some factorization X × Y = {0, 1}n of the input domain of S:

tri-dag(S ′) ≤

 rect-dag(S ′)

thresh-dag(S)

 ≤ conj-dag(S) ≤ nO(w(S)). (4.1)

The first two inequalities holds because each conjunction can be simulated by a rectangle as well as

by a linear threshold function, either of which can be simulated by a triangle. The last inequality

holds since there are at most nO(w) many distinct width-w conjunctions, and we may assume w.l.o.g.

that any f ∈ F is associated with at most one node in an F -dag (any incoming edge to a node v

can be rewired to the lowest node u, in topological order, such that fv = fu).

4.3 Equivalence of Circuits and Communication Dags

We prove Lemma 4.4 which characterizes monotone complexity measures in terms of communication

dags. These characterizations are already explicit in literature. However, since our definitions are

stated in a slightly different (but equivalent) way as compared to prior literature, we provide proofs

of these characterizations for completeness.

For convenience, we will define top-down dags by associating each node v with a feasible set Rv

and it should be understood that fv(z) := 1 {z ∈ Rv} is the indicator functions of Rv.

Proof of Lemma 4.4. We begin with (1.) and, for simplicity, only deal with case of monotone

circuits for now. These characterizations already exist in literature due to [Raz95, Sok17].

Circuits −→ Rectangle-Dags. Given a monotone circuit C computing a function f : {0, 1}n →

{0, 1}, we will construct a rectangle-dag solving mKW(f) with the same dag structure as C. For any

gate g, we assign it a rectangular feasible set Rg := Xg × Yg where Xg := {x ∈ f−1(1) : g(x) = 1}

and Yg := {y ∈ f−1(0) : g(y) = 0}. We label a leaf node computing xi by the output label i ∈ [n].

We now verify the three properties of rectangle-dags:

1. Root: Since the root gate g computes f , we have Rg = f−1(1)× f−1(0).

31

2. Non-leaves: Suppose gate g has children g1, g2. If g = g1 ∧ g2, then Xg = Xg1 ∩ Xg2 and

Yg = Yg1 ∪ Yg2 . If g = g1 ∨ g2, then Xg = Xg1 ∪Xg2 and Yg = Yg1 ∩ Yg2 . In either case, we

have Rg ⊆ Rg1 ∪Rg2 as desired.

3. Leaves: Consider a leaf gate g computing the function zi for some i ∈ [n]. By definition of

Rg, we have that xi = 1 and yi = 0 for all (x, y) ∈ Rg, that is, Rg ⊆ mKW(f)−1(i).

Rectangle-Dags −→ Circuits. Given a rectangle-dag solving mKW(f), we construct a mono-

tone circuit C with the same dag structure, that computes f . In place of leaves labeled with output

i ∈ [n], we include gates computing the input variable zi. For every non-leaf node v with children

u and w, we have associated feasible sets such that Rv ⊆ Ru ∪ Rw. Let Rv =: Xv × Yv. The key

observation is that either (a) Xv ⊆ Xu ∩Xw or (b) Yv ⊆ Yu ∩ Yw holds (cf. Figure 4.3). If (a) holds,

we include an ∧ gate and if (b) holds, we include an ∨ gate in place of v.

We prove correctness of the circuit by induction on nodes of the rectangle-dag, with the following

inductive hypothesis: for any node v, the function gv computed by the corresponding sub-circuit

under v satisfies that g−1
v (1) ⊇ Xv and g−1

v (0) ⊇ Yv.

1. Leaves (base case): A leaf node v labeled by i ∈ [n] is replaced by gate zi. But we know that

xi = 1 for all x ∈ Xv and yi = 0 for all y ∈ Yv.

2. Non-Leaves (induction): Suppose (a) Xv ⊆ Xu ∩ Xw holds and we have an ∧ gate in place

of v. By inductive hypothesis, we have that gu(x) = 1 for all x ∈ Xu and gw(1) = 1 for all

x ∈ Xw, hence, we have that gv(x) := gu(x)∧ gw(x) = 1 for all x ∈ Xv ⊆ Xu ∩Xw. On the other

hand, we have that gu(y) = 0 for all y ∈ Yu and gw(y) = 0 for all y ∈ Yw, hence, we have that

gv(y) := gu(y) ∧ gw(y) = 0 for all y ∈ Yv ⊆ Yu ∪ Yw. Case (b) is handled similar.

Rv

Ru

Rw

(a) Xv ⊆ Xu ∩Xw

Rv

Ru

Rw

(b) Yv ⊆ Yu ∩ Yw

Figure 4.3: Only two possible scenarios for Rv ⊆ Ru ∪Rw

32

3. Root: For the root gate v we have that g−1
v (1) ⊇ f−1(1) and g−1

v (0) ⊇ f−1(0). Thus, gv ≡ f .

Case of non-monotone circuits. The procedure to convert rectangle-dags solving KW(f) to

(non-monotone) circuits computing f also works similarly, with the only change being how we label

the leaves. If a leaf node v is labeled with i ∈ [n], then either xi = 1 and yi = 0 for all (x, y) ∈ Rv

or xi = 0 and yi = 1 for all (x, y) ∈ Rv. In the former case, we include the gate zi, and in the latter

case, the gate ¬zi in place of v. Thus, circuit size(f) ≤ rect-dag(KW(f)).

To convert non-monotone circuits into rectangle-dags, we first pre-process the given non-

monotone circuit C into a circuit C ′ such that size(C ′) ≤ 2 · size(C) and all the NOT gates are

at the leaves. We can now perform the transformation of going from circuits to rectangle-dags as

described before. This shows that rect-dag(KW(f)) ≤ 2 · (circuit size(f)).

We now move to (2.) the equivalence between real monotone circuits and triangle dags. This

characterization was proved only recently in [HP18].

Real Monotone Circuits −→ Triangle-Dags. Given a real monotone circuit C computing a

monotone f : {0, 1}n → {0, 1}, we construct a tri-dag with the same dag structure as C solving

mKW(f). For any gate g, we assign it a triangular feasible set Tg := {(x, y) : g(x) > g(y)}. We

now verify the three properties of triangle-dags:

1. Root: Root gate g computes f and hence Tg = {(x, y) : g(x) > g(y)} = f−1(1)× f−1(0).

2. Non-leaves: Suppose gate g has children g1, g2. That is, g(z) = Φg(g1(z), g2(z)), where

Φg : R × R → R is a monotone function. For any (x, y) ∈ Tg, since g(x) > g(y) and Φg is

monotone, at least one of g1(x) > g1(y) or g2(x) > g2(y) must hold. Thus, (x, y) ∈ Tg1 ∪ Tg2 .

3. Leaves: Consider a leaf gate g computing the function zi for some i ∈ [n]. By definition of Tg,

we have that xi = 1 and yi = 0 for all (x, y) ∈ Tg. Thus, Tg ⊆ mKW(f)−1(i).

Triangle-Dags −→ Real Monotone Circuits. Given a tri-dag solving mKW(f), we construct

a real monotone circuit C with the same dag structure, that computes f . For every node v

let av : f−1(1) → R and bv : f−1(0) → R be the functions that define the feasible set Tv =

33

{(x, y) : av(x) > bv(y)}. For leaves labeled with output i ∈ [n], we can assume, without loss of

generality, that av(x) = xi and bv(y) = yi.1

In place of leaves labeled with output i ∈ [n], we include gates computing the input variable zi.

For every non-leaf node, we include a monotone gate Φv : R× R→ R, in a way such that,

Φv(α1, α2) = max
z∈f−1(1)

av(z) subject to, au(z) ≤ α1 and aw(z) ≤ α2

We prove correctness of the circuit by induction on nodes of the triangle-dag, with the following

inductive hypothesis: for any node v, the function gv computed by the corresponding sub-circuit

under v satisfies that gv(x) ≥ av(x) and gv(y) ≤ bv(y) for all (x, y) ∈ f−1(1)× f−1(0).

1. Leaves (base case): All leaf nodes v labeled by i ∈ [n] correspond to the gate gv(z) = zi,

which is same as av(z) if z ∈ f−1(1), or bv(z) if z ∈ f−1(0).

2. Non-Leaves (induction): It is easy to see that gv(x) ≥ av(x) for all x ∈ f−1(1) by setting z = x.

Suppose for contradiction that there exists a y ∈ f−1(0) such that gv(y) > bv(y). Hence, there

exists a z ∈ f−1(1) such that av(z) > bv(y) and hence (z, y) ∈ Tv. But on the other hand,

by the inductive hypothesis we have that au(z) ≤ gu(y) ≤ bu(y) and aw(z) ≤ gw(y) ≤ bw(y).

Hence, we have that (z, y) /∈ Tu ∪ Tw, which is a contradiction.

3. Root: For the root gate v, we have that gv(x) ≥ av(x) > bv(y) ≥ gv(y) for all (x, y) ∈ f−1(1)×

f−1(0). Thus, we can choose a threshold t between minx∈f−1(1) gv(x) and maxy∈f−1(0) gv(y)

and compute f(z) = 1 {gv(z) ≥ t}. Note that this doesn’t require any additional gate.

1By letting av(x) = xi and bv(y) = yi, we are only enlarging Tv without affecting correctness.

34

Chapter 5

Monotone Circuit Lower Bounds

In this chapter we prove our first lifting theorem, establishing a characterization of the rectangle-dag

complexity for composed search problems of the form S ◦ gn, in terms of the conjunction-dag

width of S. This show that the corresponding bound Equation 4.1 (in Chapter 4) is tight for such

composed search problems.

Theorem 5.1. Let m = m(n) := n∆ for ∆ ≥ 20. For any S ⊆ {0, 1}n ×O,

rect-dag(S ◦ Indnm) = nΘ(w(S)).

As an implication, we get that for any CNF contradiction F that requires large Resolution

width to refute, there is an explicit associated monotone function f : {0, 1}N → {0, 1} that requires

large monotone circuits to compute.

Corollary 5.2. Any n-variate unsatisfiable k-CNF formula F with ` clauses that requires resolution

width w to refute is associated with an explicit monotone function f : {0, 1}N → {0, 1} on N = `·n∆k

variables, which requires monotone circuits of size nΩ(w).

In particular, starting with a CNF contradiction with ` = O(n), k = O(1), and w = Ω(n) get

that the associated monotone function on N = nO(1) variables requires monotone circuits of size

2N
Ω(1) . An unsatisfactory thing about this corollary however is that we don’t get a “nice” description

of the associated hard monotone function.

35

To overcome this issue, we provide a different reduction methodology, thereby getting an

exponential lower bound on the monotone circuit size of (a monotone variant of) 3Xor-Sat,

defined as follows: An input x ∈ {0, 1}N is interpreted as (the indicator vector of) a set of 3Xor

constraints over n boolean variables v1, . . . , vn (there are N = 2n3 possible constraints). The

function 3Xor-Satn(x) := 1 iff the set x is unsatisfiable, that is, no boolean assignment to the vi

satisfies all constraints in x. This is indeed a monotone function: flipping any bit of x from 0 to 1,

is tantamount to adding a new constraint to the instance, making it even harder to satisfy.

Corollary 5.3. 3Xor-Satn requires monotone circuits of size 2n
Ω(1).

This theorem stands in contrast to the fact that 3Xor-Sat is computable by linear-sized

monotone F2-span programs; this is the first such function efficiently computable by monotone

span programs, that provably requires exponential monotone circuit size. Given that there exist

fast parallel (non-monotone) algorithms for linear algebra [Mul87], we also have that 3Xor-Sat

is in NC2. Thus our result improves qualitatively on the monotone vs. non-monotone separation

of Tardos [Tar88] who exhibited a monotone function in P (computed by solving a semidefinite

program) with exponential monotone circuit complexity. For further comparison, another famous

candidate problem to witness a monotone vs. non-monotone separation is the perfect matching

function: it is in RNC2 [Lov79] while it is widely conjectured to have exponential monotone circuit

complexity (a quasipolynomial lower bound was proved by Razborov [Raz85a]).

5.1 Rectangle Partitioning Scheme

We show that given any rectangle R := X × Y ⊆ [m]n × {0, 1}mn, we can partition most of X × Y

into ρ-structured subrectangles with |fix ρ| bounded in terms of the size of X × Y . Indeed, we

describe a simple 2-round partitioning scheme from [GPW17] below; see also Figure 5.1. In the 1st

round of the algorithm, we partition the rows as X =
⊔
iX

i where each X i will be fixed on some

blocks Ii ⊆ [n] and 0.95-dense1 on the remaining blocks [n] r Ii. In the 2nd round, each X i × Y is

further partitioned along columns so as to fix the outputs of the gadgets on coordinates Ii.
1the proof could equivalently be done with 0.9-dense-ness that would align more with the definition of ρ-structured-

ness. However, choosing 0.95 helps us with parameters in Chapter 6

36

Rectangle Scheme

Input: R = X × Y ⊆ [m]n × {0, 1}mn.
Output: A partition of R into subrectangles.

1: 1st round: Iterate the following for i = 1, 2, . . . , until X becomes empty:
(i) Let Ii ⊆ [n] be a maximal subset (possibly Ii = ∅) such that XIi has min-entropy rate

< 0.95, and let αi ∈ [m]Ii be an outcome witnessing this: Pr[XIi = αi] > m−0.95|Ii|

(ii) Define X i := {x ∈ X : xIi = αi}
(iii) Update X ← X rX i

2: 2nd round: For each part X i and γ ∈ {0, 1}Ii , define Y i,γ := {y ∈ Y : gIi(αi, yIi) = γ}
3: return {Ri,γ := X i × Y i,γ : Y i,γ 6= ∅}

All properties of Rectangle Scheme that we will subsequently need are formalized below; see also

Figure 5.1. For terminology, given a subset A′ ⊆ A we define its density (inside A) as |A′|/|A|.

Lemma 5.4 (Rectangle Lemma). Fix any parameter k ≤ n log n. Given a rectangle R ⊆ [m]n ×

{0, 1}mn, let R =
⊔
iR

i be the output of Rectangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n

and Yerr ⊆ {0, 1}mn, both of density ≤ 2−k (inside their respective sets), such that for each i, one of

the following holds:

. Structured case: Ri is ρi-structured for some ρi of width at most O(k/ log n).

. Error case: Ri is covered by error rows/columns, i.e., Ri ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr.

A query alignment property holds: for every x ∈ [m]n rXerr, there exists a subset Ix ⊆ [n] with

|Ix| ≤ O(k/ log n) such that every “structured” Ri intersecting {x} × {0, 1}mn has fix ρi ⊆ Ix.

The proof is implicit in [GLM+16, GPW17]. We start by recording a basic fact about behavior

of min-entropy on conditioning and a key property of the 1st round of Rectangle Scheme.

Fact 5.5. Let X be a random variable and E an event. Then H∞(X | E) ≥ H∞(X)− log 1/Pr[E].

Claim 5.6. Each part X i obtained in 1st round of Rectangle Scheme satisfies:

− Blockwise-density: X i
[n]rIi is 0.95-dense.

− Relative size: |X>i| ≤ mn−0.05|Ii| where X>i :=
⋃
j≥iX

j.

Proof. By definition, X i = (X>i |X>i
Ii

= αi). Suppose for contradiction that X i
[n]rIi is not 0.95-

dense. Then there is some nonempty subset K ⊆ [n] r Ii and an outcome β ∈ [m]K violating the

37

X

Y

Xerr

Yerr

(a) (b)

Figure 5.1: (a) Rectangle Scheme partitions R = X × Y first along rows, then along columns.
(b) Lemma 5.4 illustrated: most subrectangles are ρ-structured for low-width ρ, except some error
parts (highlighted in figure) that are contained in few error rows/columns Xerr, Yerr.

min-entropy condition, namely Pr[X i
K = β] > m−0.95|K|. But this contradicts the maximality of Ii

since the larger set Ii ∪K now violates the min-entropy condition for X>i:

Pr[X>i
Ii∪K = αiβ] = Pr[X>i

Ii
= αi] · Pr[X i

K = β] > m−0.95|Ii| ·m−0.95|K| = m−0.95(|Ii∪K|) .

This shows the first property. For the second property, apply Fact 5.5 for X i = (X>i |X>i
Ii

= αi) to

find that H∞(X i) ≥ H∞(X>i)− 0.95|Ii| logm. On the other hand, since X i is fixed on Ii, we have

H∞(X i) ≤ (n−|Ii|) logm. Combining these two inequalities we getH∞(X>i) ≤ (n−0.05|Ii|) logm,

which yields the second property.

Proof of Lemma 5.4 . Identifying Yerr, Xerr. We define Yerr :=
⋃
i,γ Y

i,γ subject to |Y i,γ| < 2mn−n
2 .

To bound the size of Yerr, we claim that there are at most (4m)n possible choices of i, γ. Indeed,

each X i is associated with a unique pair (Ii ⊆ [n], αi ∈ [m]Ii), and there are at most 2n choices of

Ii and at most mn choices of corresponding αi. Also, for each X i, there are at most 2n possible

assignments to γ ∈ {0, 1}Ii . For each i, γ, we add at most 2mn−n
2 columns to Yerr. Thus, Yerr has

density at most (4m)n · 2−n2
< 2−k inside {0, 1}mn.

We define Xerr :=
⊔
iX

i subject to |Ii| > 20k/ logm. Let i be the least index with |Ii| >

20k/ logm so that Xerr ⊆ X>i. By Claim 5.6, |X>i| ≤ mn−0.05|Ii| < mn · 2−k since |Ii| > 20k/ logm.

In other words, X>i, and hence Xerr, has density at most 2−k inside [m]n.

Structured vs. error. Let Ri,γ := X i × Y i,γ, where Xi is associated with (Ii, αi), be a rectangle not

38

contained in the error rows/columns. By definition of Xerr, Yerr, this means |Y i,γ| ≥ 2mn−n
2 (so that

H∞(Y i,γ) ≥ mn− n2) and |Ii| ≤ 20k/ logm. We have from Claim 5.6 that X i
[n]rIi is 0.95-dense.

Hence, Ri,γ is ρi-structured where ρi equals γ on Ii and consists of stars otherwise.

Query alignment. For each x ∈ [m]n rXerr, we define Ix = Ii where X i is the unique part that

contains x. It follows that any ρ-structured rectangle that intersects the x-th row is of the form

X i × Y i,γ and hence has fix ρ = Ii. Since X i 6⊆ Xerr, we have |Ii| ≤ O(k/ log n).

5.2 Lifting for Rectangle-Dags

In this section we prove the nontrivial direction of Theorem 5.1: Let Π be a rectangle-dag solving

S ◦ Indnm of size nd for some d. Our goal is to show that w(S) ≤ O(d).

5.2.1 Game semantics for dags

For convenience (and fun), we use the language of two-player competitive games, introduced

in [Pud00, AD08], which provides an alternative way of thinking about conjunction-dags solving

S ⊆ {0, 1}n ×O. The game involves two competing players, Explorer and Adversary, and proceeds

in rounds. The state of the game in each round is modeled as a partial assignment ρ ∈ {0, 1, ∗}n.

At the start of the game, ρ := ∗n. In each round, Explorer makes one of two moves:

− Query a variable: Explorer specifies an i ∈ free ρ, and Adversary responds with a bit

b ∈ {0, 1}. The state ρ is updated by ρi ← b.

− Forget a variable: Explorer specifies an i ∈ fix ρ, and the state is updated by ρi ← ∗.

An important detail is that Adversary is allowed to choose b ∈ {0, 1} freely even if the i-th variable

was queried (with response different from b) and subsequently forgotten during past play. The game

ends when a solution to S can be inferred from ρ, that is, when C−1
ρ (1) ⊆ S−1(o) for some o ∈ O.

Explorer’s goal is to end the game while keeping the width of the game state ρ as small

as possible. Indeed, Atserias and Dalmau [AD08] prove that w(S) is characterized (up to an

additive ±1) as the least w such that the Explorer has a strategy for ending the game that keeps

the width of the game state at most w throughout the game. (A similar characterization exists for

39

dag size [Pud00].) Hence our goal becomes to describe an Explorer-strategy for S such that the

width of the game state never exceeds O(d) regardless of how the Adversary plays.

5.2.2 Simplified proof

To explain the basic idea, we first give a simplified version of the proof: We assume that all

rectangles R involved in Π—call them the original rectangles—can be partitioned errorlessly into

ρ-structured subrectangles for ρ of width O(d). That is, invoking Rectangle Scheme for each

original R, we assume that

(∗) Assumption: All subrectangles in the partition R =
⊔
iR

i output by Rectangle Scheme

satisfy the “structured” case of Lemma 5.4 for k := 2d log n.

In Section 5.2.3 we remove this assumption by explaining how the proof can be modified to work in

the presence of some error rows/columns.

Overview. We extract a width-O(d) Explorer-strategy for S by walking down the rectangle-dag Π,

starting at the root. For each original rectangle R that is reached in the walk, we maintain a

ρ-structured subrectangle R′ ⊆ R chosen from the partition of R. Note that ρ will have width O(d)

by our choice of k. The intention is that ρ will record the current state of the game. There are

three issues to address: (1) Why is the starting condition of the game met? (2) How do we take a

step from a node of Π to one of its children? (3) Why are we done once we reach a leaf?

(1) Root case. At start, the root of Π is associated with the original rectangle R = [m]n×{0, 1}mn

comprising the whole domain. The partition of R computed by Rectangle Scheme is trivial: it

contains a single part, the ∗n-structured R itself. Hence we simply maintain the ∗n-structured

R ⊆ R, which meets the starting condition for the game.

(2) Internal step. This is the crux of the argument: Supposing the game has reached state

ρR′ and we are maintaining some ρR′-structured subrectangle R′ ⊆ R associated with an internal

node v, we want to move to some ρL′-structured subrectangle L′ ⊆ L associated with a child of v.

Moreover, we must keep the width of the game state at most O(d) during this move.

40

R′

L1
L0 Y ′

X ′
x∗

(x∗, y∗)

Since R′ =: X ′ × Y ′ is ρR′-structured, we have from Lemma 3.5 that there exists some x∗ ∈ X ′

such that {x∗} × Y ′ is ρR′-like. Let the two original rectangles associated with the children of v

be L0 and L1. Let
⊔
i L

i
b be the partition of Lb output by Rectangle Scheme. By query alignment

in Lemma 5.4, there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Lib that intersect the x∗-th row

are ρi-structured with fix ρi ⊆ I∗b . As Explorer, we now query the input variables in coordinates

J := (I∗0 ∪I∗1)rfix ρR′ (in any order) obtaining some response string zJ ∈ {0, 1}J from the Adversary.

As a result, the state of the game becomes the extension of ρR′ by zJ , call it ρ∗, which has width

|fix ρ∗| = |fix ρR′ ∪ J | ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗, y∗) ∈ R′ ⊆ L0 ∪ L1) such that G(x∗, y∗)

is consistent with ρ∗; indeed, the whole row {x∗} × Y ′ is ρR′-like and ρ∗ extends ρR′ . Suppose

(x∗, y∗) ∈ L0; the case of L1 is analogous. Let L′ ⊆ L0 be the unique part in the partition of L0

such that (x∗, y∗) ∈ L′. Note that L′ is ρL′-like for some ρL′ that is consistent with G(x∗, y∗) and

fix ρL′ ⊆ I∗0 (by query alignment). Hence ρ∗ extends ρL′ . As Explorer, we now forget all queried

variables in ρ∗ except those queried in ρL′ .

We have recovered our invariant: the game state is ρL′ and we maintain a ρL′-structured

subrectangle L′ of an original rectangle L0. Moreover, the width of the game state remained O(d).

(3) Leaf case. Suppose the game state is ρ and we are maintaining an associated ρ-structured

subrectangle R′ ⊆ R corresponding to a leaf node. The leaf node is labeled with some solution

o ∈ O satisfying R′ ⊆ (S ◦G)−1(o), that is, G(R′) ⊆ S−1(o). But G(R′) = C−1
ρ (1) by Lemma 3.4

so that C−1
ρ (1) ⊆ S−1(o). Therefore the game ends. This concludes the (simplified) proof.

41

5.2.3 Accounting for error

Next, we explain how to get rid of the assumption (∗) by accounting for the rows and columns

that are classified as error in Lemma 5.4 for k := 2d log n. The partitioning of Π’s rectangles is

done more carefully: We sort all original rectangles in reverse topological order R1, R2, . . . , Rnd

from leaves to root, that is, if Ri is a descendant of Rj then Ri comes before Rj in the order. Then

we process the rectangles in this order:

Initialize cumulative error sets X∗err = Y ∗err := ∅. Iterate for i = 1, 2, . . . , nd rounds:

1. Remove from Ri the rows/columns X∗err, Y ∗err. That is, update

Ri ← Ri r
(
X∗err × {0, 1}mn ∪ [m]n × Y ∗err

)
.

2. Apply the Rectangle Scheme for Ri. Output all resulting subrectangles that satisfy the

“structured” case of Lemma 5.4 for k := 2d log n. (All non-structured subrectangles are

omitted). Call the resulting error rows/columns Xerr and Yerr.

3. Update X∗err ← X∗err ∪Xerr and Y ∗err ← Y ∗err ∪ Yerr.

In words, an original rectangle Ri is processed only after all of its descendants are partitioned.

Each descendant may contribute some error rows/columns, accumulated into sets X∗err, Y ∗err, which

are deleted from Ri before it is partitioned. The partitioning of Ri will in turn contribute its error

rows/columns to its ancestors.

We may now repeat the proof of Section 5.2.2 verbatim using only the structured subrectangles

output by the above process. That is, we still maintain the same invariant: when the game state is

ρ, we maintain a ρ-structured R′ (output by the above process) of an original R. We highlight only

the key points below.

(1) Root case. The cumulative error at the end of the process is tiny: X∗err, Y ∗err have density

at most nd · n−2d ≤ 1/4 by a union bound over all rounds. In particular, the root rectangle Rnd

(with errors removed) still has density > 1/2 inside [m]n × {0, 1}mn, and so the partition output by

Rectangle Scheme is trivial, containing only the ∗n-structured Rnd itself. This meets the starting

condition for the game.

42

(2) Internal step. By construction, the cumulative error sets shrink when we take a step from a

node to one of its children. This means that our error handling does not interfere with the internal

step: each structured subrectangle R′ of an original rectangle R is wholly covered by the structured

subrectangles of R’s children.

(3) Leaf case. This case is unchanged.

5.3 Reductions to mKW Search Problems

In this section, we show how to reduce the composed search problems S ◦gn to monotone KW search

problems corresponding to some function f : {0, 1}N → {0, 1}. When combined with Theorem 5.1,

this yields monotone circuit lower bounds. We describe two types of reductions.

. Generic reductions. We recall a known reduction from total search problems with small

non-deterministic communication complexity to mKW search problems. In particular, this

allows us to prove Corollary 5.2.

. Reductions to monotone C-Sat. While slightly inefficient in terms of number of input

variables to f , this approach gives a very clean description of the final function. In particular,

this allows us to prove the lower bound on monotone circuits size of 3Xor-Sat (Corollary 5.3).

We remark that the only reason that our approach yields only monotone circuit lower bounds is

because we only know how to reduce to monotone KW search problems.

5.3.1 Generic Reductions

Lemma 5.7 (Generic Reduction to mKW). For all unsatisfiable n-variate k-CNFs F with ` clauses,

S(F) ◦ Indnm reduces to mKW(f) for an explicit monotone function f : {0, 1}N → {0, 1}, where

N ≤ ` · (2m)k.

A rectangle R ⊆ X × Y is said to be monochromatic for a search problem S ⊆ X × Y × O

if R ⊆ S−1(o) for some o ∈ O. The nondeterministic communication complexity of S is the

logarithm of the least number of monochromatic rectangles that cover the whole input domain

43

X × Y . It is easy to see that mKW(f) for any monotone f : {0, 1}N → {0, 1} has nondeterministic

communication complexity of logN , with one rectangle to cover all inputs (x, y) ∈ mKW(f)−1(i)

for each i ∈ [N]. The following lemma establishes a converse (we provide a proof for completeness).

Lemma 5.8 (cf. [Gál01, Lemma 2.3]). If S has nondeterministic communication complexity logN ,

then S reduces to mKW(f) for some monotone f : {0, 1}N → {0, 1}.

Proof. Let {R1, . . . , RN} be the set of monochromatic rectangles that cover the entire domain

X × Y , where Ri = Xi × Yi. Define maps A : X → {0, 1}N and B : Y → {0, 1}N such that,

A(x)i = 1 {x ∈ Xi} and B(y)i = 1 {y /∈ Yi}

In words, A(x) is the indicator vector of the subset of rectangles among the cover, that the

row corresponding to x intersects with, and B(y) is the complement of such an indicator vector

for the column corresponding to y. For any (x, y), there exists a coordinate i ∈ [N] such that

(x, y) ∈ Ri and hence A(x)i = 1 and B(y)i = 0. Thus, we can define a (partial) monotone function

f : {0, 1}N → {0, 1} where f(A(x)) = 1 for all x ∈ X and f(B(y)) = 0 for all y ∈ Y. Thus, S

reduces to mKW(f) as any solution i ∈ [N] to mKW(f) points us to a monochromatic rectangle Ri

and hence a solution to S.

Proof of Lemma 5.7. Consider a composed search problem S(F) ◦ gn obtained from a k-CNF

contradiction with ` clauses. Its nondeterministic communication complexity is at most log `+ k ·

(logm+ 1); it takes log ` bits to specify an unsatisfied clause C, and logm+ 1 bits to verify the

output of a single gadget, and there are k gadgets relevant to C.

Proof of Corollary 5.2. This follows readily from Lemma 5.7 combined with Theorem 5.1 and the

equivalence of monotone circuits for f and rectangle-dags solving mKW(f) (Lemma 4.4), namely,

monotone circuit size(f) = rect-dag(mKW(f)) ≥ rect-dag(S(F) ◦ Indnm) ≥ nΩ(w).

44

5.3.2 Reductions to Monotone C-Sat

C-Sat. Fix an alphabet Σ (potentially infinite, e.g., Σ = R). Let C be a finite set of k-ary

predicates over Σ, that is, each C ∈ C is a function C : Σk → {0, 1}. We define a monotone function

C-Satn : {0, 1}N → {0, 1} over N = |C|nk input bits as follows. An input x ∈ {0, 1}N is interpreted

as a C-CSP instance, that is, x is (the indicator vector of) a set of C-constraints, each applied to a

k-tuple of variables from v1, . . . , vn. We define C-Satn(x) := 1 iff the C-CSP x is unsatisfiable: no

assignment v ∈ Σn exists such that C(v) = 1 for all C ∈ x.

For a field F, we define kLin(F) as the set of all F-linear equations of the form

∑
i∈[k] aivi = a0, where ai ∈ {0,±1}.

In particular, we recover 3Xor-Satn (as in Corollary 5.3) essentially as 3Lin(F2)-Satn. We could

have allowed the ai to range over F when F is finite, but we stick with the above convention as it

ensures that the set kLin(R) is always finite.

Boolean alphabets. We assume henceforth that all alphabets Σ contain distinguished elements

0 and 1. We define Cbool to be the constraint set obtained from C by restricting each C ∈ C to the

boolean domain {0, 1}k ⊆ Σk. Moreover, if F is a C-CSP, we write Fbool for the Cbool-CSP obtained

by restricting the constraints of F to boolean domains. Consequently, any S(Fbool) associated with

a C-CSP F is a boolean search problem.

We show that a lifted version of S(Fbool), where F is an unsatisfiable C-CSP, reduces to the

monotone Karchmer–Wigderson game for C-Sat. Note that we require F to be unsatisfiable over

its original alphabet Σ, but the reduction is from the booleanized (and hence easier-to-refute)

version of F .

Lemma 5.9. Let F be an unsatisfiable C-CSP. Then S(Fbool) ◦ Indnm reduces to mKW(C-Satnm).

Proof. Suppose the C-CSP F consists of constraints C1, . . . , Ct applied to variables z1, . . . , zn. We

reduce S(Fbool) ◦ Indnm ⊆ [m]n × ({0, 1}m)n × [t] to the problem mKW(f) ⊆ f−1(1)× f−1(0)× [N]

45

where f := C-Satmn over N := |C|(mn)k input bits. The two parties compute locally as follows.

Akbar: Given (x1, . . . , xn) ∈ [m]n, Akbar constructs a C-CSP over variables {vi,j : (i, j) ∈ [n]× [m]}

that is obtained from F by renaming its variables z1, . . . , zn to v1,x1 , . . . , vn,xn (in this

order). Since F was unsatisfiable, so is Akbar’s variable-renamed version of it. Thus,

when interpreted as an indicator vector of constraints, Akbar has constructed a 1-input of

C-Satmn.

Birbal: Given y ∈ ({0, 1}m)n, Birbal constructs a C-CSP over variables {vi,j : (i, j) ∈ [n]× [m]} as

follows. We view y naturally as a boolean assignment to the variables vi,j. Birbal includes

in his C-CSP instance all possible C-constraints C applied to the vi,j such that C is satisfied

under the assignment y (i.e., C(y) = 1). This is clearly a satisfiable C-CSP instance, as the

assignment y satisfies all Birbal’s constraints. Thus, when interpreted as an indicator vector

of constraints, Birbal has constructed a 0-input of C-Satmn.

It remains to argue that any solution to mKW(C-Satmn) gives rise to a solution to S(Fbool)◦Indnm.

Indeed, a solution to mKW(C-Satmn) corresponds to a C-constraint C that is present in Akbar’s

C-CSP but not in Birbal’s. By Birbal’s construction, such a C must be violated by the assignment

y (i.e., C(y) = 0). Since all Akbar’s constraints involve only variables v1,x1 , . . . , vn,xn , the constraint

C must in fact be violated by the partial assignment to the said variables, which is z = Indnm(x, y).

Thus the constraint of F from which C was obtained via renaming is naturally associated to a

solution to S(Fbool) ◦ Indnm.

Proof of Corollary 5.3. By Lemma 4.4, it suffices to show

rect-dag(mKW(3Xor-Satn)) ≥ exp(nΩ(1)).

Urquhart [Urq87] exhibited unsatisfiable n-variate 3Xor-CSPs F (aka Tseitin formulas) requiring

linear Resolution width, that is, w(S(F)) ≥ Ω(n) in our notation. Hence Theorem 5.1 implies

that rect-dag(S(F) ◦ Indnm) ≥ exp(Ω(n)) for m = n∆. By the reduction in Lemma 5.9, we get

that rect-dag(mKW(3Xor-Satnm)) ≥ exp(Ω(n)). (Note that 3Xor has a boolean alphabet, so

F = Fbool.) This yields the desired lower bound by reparameterizing the number of variables.

46

In fact, we can further generalize Corollary 5.3 to a lower bound for 3Lin(F)-Satn. In order to do

so, we first state a resolution width lower bound for a kLin(F)-CSP.

Lemma 5.10. For any field F ∈ {Fp : prime p} ∪ {R} and large enough constant k, there exists

an kLin(F)-CSP F over n Boolean variables with O(n) constraints that has resolution width Ω(n).

Proof. Fix such an F henceforth. We start with a kLin(F)-CSP introduced in [BGIP01] for F = Fp

(aka mod-p Tseitin formulas), but the definition generalizes to any field. The CSP is constructed

based on a given directed graph G = (V,E) that is regular : in-deg(v) = out-deg(v) = k/2 for

all v ∈ V . Fix also a distinguished vertex v∗ ∈ V . Then F = FG,F is defined as the following

kLin(F)-CSP over variables {ze : e ∈ E}:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1v∗(v), (FG,F)

where 1v∗(v∗) = 1 and 1v∗(v) = 0 for v 6= v∗. This system is unsatisfiable because the sum over

v ∈ V of the RHS equals 1 whereas the sum of the LHS equals 0 (each variable appears once with

a positive sign, once with a negative sign).

We claim that the Booleanized k-CSP Fbool (more precisely, its natural k-CNF encoding — cf.

Remark 2.4) has linear Resolution width, that is w(S(Fbool)) ≥ Ω(n). Indeed, the constraints

of Fbool are k/2-robust in the sense that if a partial assignment ρ ∈ {0, 1, ∗}k fixes the value of

a constraint of Fbool, then ρ must set more than k/2 variables. Alekhnovich et al. [ABRW04,

Theorem 3.1] show that if k is a large enough constant, there exist regular expander graphs G such

that Fbool (or any k-CSP with Ω(k)-robust constraints) has Resolution width Ω(n), as desired.

Remark 5.11. The natural k-CNF encoding of FG,F considered in Lemma 5.10 has NSF-refutations

of degree O(k), since each linear constraint can be derived from its corresponding CNF constraints

with degree O(k) and summing up all linear constraints gives us 1. We will use this observation

later in Chapter 6, to give a separation between NSF and Cutting Planes refutations.

Corollary 5.12. For any field F ∈ {Fp : prime p} ∪ {R},

3Lin(F)-Satn requires monotone circuits of size 2n
Ω(1).

47

Proof. By Lemma 4.4, it suffices to show that,

rect-dag(mKW(3Lin(F)-Satn)) ≥ 2n
Ω(1)

.

We already get rect-dag(mKW(kLin(F)-Satn)) ≥ 2n
Ω(1) for large enough k, by using Lemma 5.10

with Theorem 5.1 and the reduction in Lemma 5.9 (analogous to the proof of Corollary 5.3). We

can reduce the arity from k to 3 by a standard trick. For example, given the linear constraint

a1v1 + a2v2 + a3v3 + a4v4 = a0 we can introduce a new auxiliary variable u and two equations

a1v1 + a2v2 + u = 0 and −u + a3v3 + a4v4 = a0. In general, we can create an equisatisfiable

3Lin(F)-Sat instance by replacing each equation on k > 3 variables with a collection of k − 2

equations by introducing k− 3 auxiliary variables for each possible kLin(F) constraint. This shows

that kLin(F)-Satn is a monotone projection of 3Lin(F)-SatknO(k) , thus giving us the desired lower

bound on rect-dag(mKW(3Lin(F)-Satn)) by reparameterizing the number of variables.

48

Chapter 6

Cutting Planes Lower Bounds

In this chapter we significantly strengthen Theorem 5.1. We prove a characterization of the triangle-

dag complexity for composed search problems of the form S ◦ gn, in terms of the conjunction-dag

width of S. This shows that all the inequalities in Equation 4.1 (in Chapter 4) are tight for such

composed search problems.

Theorem 6.1. Let m = m(n) := n∆ for ∆ ≥ 20. For any S ⊆ {0, 1}n ×O,

tri-dag(S ◦ Indnm) = nΘ(w(S)).

As applications, we get lower bounds against monotone real circuits and Cutting Planes refutations.

Monotone Real Circuits. Following similar reductions as in Chapter 5, we can get that the

lower bounds in Corollaries 5.2, 5.3 and 5.12 also hold against monotone real circuits (with slightly

worse constants in the exponent).

Cutting Planes. Another pithy corollary is that if we start with any CNF contradiction F that

is hard for Resolution and compose F with a gadget, the formula becomes hard for Cutting Planes.

In fact, the composed CNF can itself be encoded such that each clause has width at most 3k.

Corollary 6.2. Any unsatisfiable k-CNF formula F on n variables that requires Resolution width

w to refute, is associated with an unsatisfiable 3k-CNF F ′ on nO(1) variables, such that any Cutting

Planes refutation for F ′ has length at least nΩ(w).

49

Thus, starting with an unsatisfiable CNF F which has low-degree Nullstellensatz refutations (cf.

Remark 5.11), but requires large Resolution width to refute, we can use the above corollary to

show that Nullstellensatz refutations can be exponentially more powerful than log of the minimum

length of Cutting Planes refutations.

Corollary 6.3. For any field F ∈ {Fp : prime p} ∪ {R}, there exists an unsatisfiable CNF F over

n variables, which is refuted by an F-Nullstellensatz proof of O(log n) degree, but requires Cutting

Planes refutations of length 2n
Ω(1).

Previously, only few examples of hard contradictions were known for Cutting Planes, all proved

via feasible interpolation [Pud97, HC99, HP17, FPPR17]. A widely-asked question has been to

improve this state-of-the-art by developing alternative lower bound methods; see the surveys [BP01,

§4] and [Raz16, §5]. In particular, Jukna [Juk12, Research Problem 19.17] asked to find a more

intuitive “combinatorial” proof method “explicitly showing what properties of [contradictions] force

long derivations.” While our lower bound does implicitly use the feasible interpolation method for

Cutting Planes, at least it does afford a simple intuition: the hardness is simply borrowed from the

realm of Resolution (where we understand very well what makes formulas hard).

6.1 Lifting for Triangle-Dags

In this section we prove the nontrivial direction of Theorem 6.1: Let Π be a triangle-dag solving

S ◦G of size nd for some d. Our goal is to show that w(S) ≤ O(d).

The proof is conceptually the same as for rectangle-dags. The only difference is that we need

to replace Rectangle Scheme (and the associated Lemma 5.4) with an algorithm that partitions a

given triangle T ⊆ [m]n × {0, 1}mn into structured subtriangles that behave like conjunctions.

6.1.1 Triangle partition scheme

We introduce a triangle partitioning algorithm, Triangle Scheme. Its precise definition is postponed

to Section 6.2. For now, we only need its high-level description: On input a triangle T , Triangle

Scheme outputs a disjoint cover
⊔
iR

i ⊇ T where Ri are rectangles. This induces a partition of

50

Li T ∩Ri

Ri

Figure 6.1: Structured case of Lemma 6.4: The subtriangle T ∩ Ri is sandwiched between two
ρi-structured rectangles Li and Ri.

T into subtriangles T ∩Ri. Each (non-error) rectangle Ri is ρi-structured (for low-width ρi) and

is associated with a ρi-structured “inner” subrectangle Li ⊆ Ri satisfying Li ⊆ T ∩ Ri ⊆ Ri; see

Figure 6.1. Hence T ∩Ri is ρi-like, as it is sandwiched between two ρi-like rectangles.

More formally, all the properties of Triangle Scheme that we will subsequently need are formalized

below (note the similarity with Lemma 5.4); see Section 6.2.2 for the proof.

Lemma 6.4 (Triangle Lemma). Fix any parameter k ≤ n log n. Given a triangle T ⊆ [m]n ×

{0, 1}mn, let
⊔
iR

i ⊇ T be the output of Triangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n

and Yerr ⊆ {0, 1}mn, both of density ≤ 2−k (inside their respective sets), such that for each i, one of

the following holds:

• Structured case: Ri is ρi-structured for some ρi of width at most O(k/ log n). Moreover,

there exists an “inner” rectangle Li ⊆ T ∩Ri such that Li is also ρi-structured.

• Error case: Ri is covered by error rows/columns, i.e., Ri ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr.

A query alignment property holds: for every x ∈ [m]n rXerr, there exists a subset Ix ⊆ [n] with

|Ix| ≤ O(k/ log n) such that every “structured” Ri intersecting {x} × {0, 1}mn has fix ρi ⊆ Ix.

6.1.2 Simplified proof

As in the rectangle case, we first give a simplified proof assuming no errors. That is, invoking

Triangle Scheme for each triangle T involved in Π, we assume that

(†) Assumption: All rectangles in the cover
⊔
iR

i ⊇ T output by Triangle Scheme satisfy the

“structured” case of Lemma 6.4 for k := 2d log n.

51

The argument for getting rid of the assumption (†) is the same as in the rectangle case, and hence

we omit that step—one only needs to observe that removing cumulative error rows/columns from a

triangle still leaves us with a triangle.

Overview. As before, we extract a width-O(d) Explorer-strategy for S by walking down the

triangle-dag Π, starting at the root. For each triangle T of Π that is reached in the walk, we

maintain a ρ-structured inner rectangle L ⊆ T . Here ρ (of width O(d) by the choice of k) will

record the current state of the game. There are the three steps (1)–(3) to address, of which (1) and

(3) remain exactly the same as in the rectangle case. So we only explain step (2), which requires us

to replace the use of Lemma 5.4 with the new Lemma 6.4.

(2) Internal step. Supposing the game has reached state ρL and we are maintaining some

ρL-structured inner rectangle L ⊆ T associated with an internal node v, we want to move to some

ρL̃-structured inner rectangle L̃ ⊆ T̃ associated with a child of v. Moreover, we must keep the

width of the game state at most O(d) during this move.

Since L =: X ′ × Y ′ is ρL-structured, we have from Lemma 3.5 that there exists some x∗ ∈ X ′

such that {x∗} × Y ′ is ρL-like. Let the two triangles associated with the children of v be T0 and T1,

so that L ⊆ T0 ∪ T1.

Let
⊔
iR

i
b be the rectangle cover of Tb output by Triangle Scheme. By query alignment in

Lemma 6.4, there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Ri
b that intersect the x∗-th row

are ρi-structured with fix ρi ⊆ I∗b . As Explorer, we now query the input variables in coordinates

J := (I∗0 ∪ I∗1)rfix ρL (in any order) obtaining some response string zJ ∈ {0, 1}J from the Adversary.

As a result, the state of the game becomes the extension of ρL by zJ , call it ρ∗, which has width

|fix ρ∗| = |fix ρL ∪ J | ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗, y∗) ∈ L ⊆ T0 ∪ T1) such that G(x∗, y∗)

is consistent with ρ∗; indeed, the whole row {x∗} × Y ′ is ρL-like and ρ∗ extends ρL. Suppose

(x∗, y∗) ∈ T0; the case of T1 is analogous. In the rectangle covering of T0, let R be the unique part

such that (x∗, y∗) ∈ R. Note that R is ρR-like for some ρR that is consistent with G(x∗, y∗) and

fix ρR ⊆ I∗0 (by query alignment). Hence ρ∗ extends ρR. As Explorer, we now forget all queried

52

Triangle Scheme
Input: Triangle T ⊆ [m]n × {0, 1}mn with labeling functions (aT , bT)
Output: A disjoint rectangle cover

⊔
iR

i ⊇ T

1: Yerr ← Column Cleanup on T
2: Initialize R0

alive := {[m]n × ({0, 1}mn r Yerr)}; Rr
alive := ∅ for all r ≥ 1; Rfinal := ∅

3: loop for r = 0, 1, 2, . . . , rounds until Rr
alive is empty:

4: for all R ∈ Rr
alive do

5:
⊔
iR

i ← Rectangle Scheme on R relative to free coordinates
6: for all parts Ri do
7: if |XT∩Ri | ≥ |XRi|/2 then
8: Add Ri to Rfinal

9: else
10: Ri,top := top half of Ri according to aT (in particular T ∩Ri ⊆ Ri,top)
11: Add Ri,top to Rr+1

alive subject to T ∩Ri,top 6= ∅

12: return Rfinal ∪ {[m]n × Yerr}

variables in ρ∗ except those queried in ρR. Also we move to the inner rectangle L̃ ⊆ R promised by

Lemma 6.4 that satisfies L̃ ⊆ T0 and is ρL̃ = ρR structured.

We have recovered our invariant: the game state is ρL̃ and we maintain a ρL̃-structured

subrectangle L̃ of a triangle T0. Moreover, the width of the game state remained O(d).

6.2 Triangle Partitioning Scheme

In the description of Triangle Scheme, we denote projections of a set S ⊆ [m]n × {0, 1}mn by

XS := {x ∈ [m]n : ∃y ∈ {0, 1}mn such that (x, y) ∈ S} ,

Y S := {y ∈ {0, 1}mn : ∃x ∈ [m]n such that (x, y) ∈ S} .

Overview. Triangle Scheme computes a disjoint rectangle cover
⊔
iR

i of T . Starting with a

trivial cover of the whole communication domain by a single part, the algorithm progressively

refines this cover over several rounds as guided by the input triangle T . As outlined in Section 6.1.1,

the goal is to end up with ρ-structured rectangles Ri that contain a large enough portion of T so

that we may sandwich Li ⊆ T ∩Ri ⊆ Ri where Li is a ρ-structured “inner” rectangle.

The main idea is as follows. The algorithm maintains a pool of alive rectangles. In a single round,

53

Column Clean-up
Input: Triangle T ⊆ [m]n × {0, 1}mn with labeling functions (aT , bT)
Output: Error columns Yerr ⊆ {0, 1}mn

1: Yerr ← ∅
2: For I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I , define YI,α,γ :=

{
y ∈ {0, 1}mn : gI(α, yI) = γ

}
3: while there exists I, α, γ, x such that 0 < |T ∩ ({x} × (YI,α,γ r Yerr))| < 2mn−n

2 do
4: Yerr ← Yerr ∪ Y T∩({x}×YI,α,γ)

5: return Yerr

for each alive rectangle R, we first invoke Rectangle Scheme in order to restore ρ-structuredness for

the resulting subrectangles Ri. Then for each Ri we check if the subtriangle T ∩ Ri occupies at

least half the rows of Ri. If yes, we add it to the final pool, which will eventually form the output

of the algorithm. If no, we discard the “lower” half of Ri as determined by the labeling aT , that is,

the half that does not intersect T . The “top” half (containing T ∩Ri) will enter the alive pool for

next round.

Column Cleanup. An important detail is the subroutine Column Cleanup, run at the start of

Triangle Scheme, which computes a small set of columns that will eventually be declared as Yerr.

By discarding the columns Yerr, we ensure that whatever subrectangle Ri is output by Rectangle

Scheme, the rows of T ∩Ri will satisfy an empty-or-heavy dichotomy : for every x ∈ XRi , the x-th

row of T ∩Ri is either empty, or “heavy”, that is, of size at least 2mn−n
2 . Having many heavy rows

helps towards satisfying the 3rd item in Definition 3.3 of ρ-stucturedness, and hence in finding the

inner rectangle Li. This property of Column Cleanup is formalized in Claim 6.5 below.

Free coordinates. Another detail to explain is the underlined phrase relative to free coordinates.

For each alive rectangle R we tacitly associate a subset of free coordinates JR ⊆ [n] and fixed

coordinates [n] r JR. At start, the single alive rectangle has JR := [n], and whenever we invoke

Rectangle Scheme for a rectangle R relative to free coordinates, the understanding is that in line (i)

of Rectangle Scheme, the choice of Ii is made among subsets of JR alone. The resulting subrectangle

Ri = X i×Y i, obtained by fixing the coordinates Ii in X i, will have its free coordinates JRi := JRrIi.

(Restricting a rectangle to its top half on line 10 does not modify the free coordinates.)

54

6.2.1 Properties of Triangle Scheme

Claim 6.5. For a triangle T ⊆ [m]n × {0, 1}mn, let Yerr be the output of Column Cleanup. Then:

− Empty-or-heavy: For every triple (I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I), and every x ∈ [m]n, it

holds that T ∩ ({x} × (YI,α,γ r Yerr)) is either empty or has size at least 2mn−n
2.

− Size bound: |Yerr| ≤ 2mn−Ω(n2).

Proof. The first property is immediate by definition of Column Cleanup. For the second property,

in each while-iteration, at most 2mn−n
2 columns get added to Yerr. Moreover, there are no more

than 2n ·mn · 2n ·mn = (2m)2n choices of I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I and x ∈ [m]n, and the loop

executes at most once for each choice of I, α, γ, x. Thus, |Yerr| ≤ (2m)2n · 2mn−n2 ≤ 2mn−Ω(n2).

Next, we list some key invariants that hold for Triangle Scheme.

Lemma 6.6. For every r ≥ 0, there exists a partition X r := {X i}i of [m]n satisfying the following.

(P1) For every R ∈ Rr
alive we have XR ∈ X r.

(P2) Each X i ∈ X r is labeled by a pair (Ii ⊆ [n], αi ∈ [m]Ii) such that X i
Ii

= αi is fixed.

(P3) The partition X r+1 is a refinement of X r. The labels respect this: if Xj ∈ X r+1 is a subset

of X i ∈ X r, then Ij ⊇ Ii and αj agrees with αi on coordinates Ii.

Moreover, let X := X r∗ be the final partition assuming Triangle Scheme completes in r∗ rounds.

(P4) For every R ∈ Rfinal the row set XR is a union of parts of X . If X i ∈ X , labeled (Ii, αi), is

such that XR ⊇ X i, then the fixed coordinates of R are a subset of Ii.

(P5) For every r ≥ 0, X r and X agree on a fraction ≥ 1−2−r of rows, that is, there is a subset of

“final” parts X r
final ⊆ X r such that

⋃
X r

final has density ≥ 1− 2−r inside [m]n, and X r
final ⊆ X .

Proof. Let us define the row partitions X r. The partition X 1 contains only a single part, [m]n,

labeled by I1 := ∅. Supposing X r has been defined, the next partition X r+1 is obtained by refining

each old part X i ∈ X r. Consider one such old part X i ∈ X r with label (Ii, αi). If there is no

rectangle R ∈ Rr
alive with XR = X i then we need not partition X i any further; we simply include X i

in X r+1 as a whole. Otherwise, let R ∈ Rr
alive be any rectangle such that XR = X i; we emphasize

55

that there can be many such choices for R, but the upcoming refinement of X i will not depend on

that choice. The r-th round of the algorithm first computes R =
⊔
iR

i using Rectangle Scheme,

and then each Ri might be horizontally split in half. We interpret this as a refinement of X i

according to the 1st round of Rectangle Scheme on R (which only depends on XR = X i), with

each part adding more fixed coordinates to the label (Ii, αi). Letting X i =
⊔
j X

i,j denote the

resulting row partition, we then split each X i,j into two halves X i,j,top and X i,j,bot. This completes

the definition of X r+1.

The properties (P1)–(P5) are straightforward to verify. For (P5), we only note that when the

algorithm horizontally splits a rectangle (inducing X i,j = X i,j,top ∪X i,j,bot), the bottom halves are

discarded, and never again touched in future rounds. That is, X i,j,bot ∈ X r′ for all r′ > r. This

cuts the number of “alive” rows
⋃
R∈Rralive

XR in half each round.

Lemma 6.7 (Error rows). Let X = {X i}i be the final row partition in Lemma 6.6. Fix any

parameter k < n log n. There is a density-2−k subset Xerr ⊆ [m]n (which is a union of parts of X)

such that for any part X i 6⊆ Xerr, we have |Ii| ≤ O(k/ log n).

Proof. Our strategy is as follows (cf. [GPW17, Lemma 7]). For x ∈ [m]n, let i(x) be the unique

index such that x ∈ X i(x) ∈ X ; recall that X i(x) is labeled by some (Ii(x), αi(x)). We will study a

uniform random x ∼ [m]n and show that the distribution of the number of fixed coordinates |Ii(x)|

has an exponentially decaying tail. This allows us to define Xerr as the set of outcomes of x for

which |Ii(x)| is exceptionally large. More quantitatively, it suffices to show for a large constant C,

Pr
[
|Ii(x)| > C · k/ log n

]
≤ 2−k. (6.1)

Recall that X and X `, where ` := k + 1, agree on all but a fraction 2−k/2 of rows by (P5).

Hence by a union bound, it suffices to show a version of Eq. 6.1 truncated at level `:

Pr
[
|Ii′(x)| > C ′ · `/ log n

]
≤ 2−` (= 2−k/2), (6.2)

where i′(x) is defined as the unique index with x ∈ X i′(x) ∈ X `.

Partitions as a tree. The sequence X 0, . . . ,X `, of row partitions can be visualized as a depth-`

56

tree where the nodes at depth r corresponds to parts of X r, and there is an edge from X ∈ X r to

X ′ ∈ X r+1 iff X ′ ⊆ X. A way to generate a uniform random x ∼ [m]n is to take a random walk

down this tree, starting at the root:

− At a non-leaf node X ∈ X r we take a tree edge (X,X ′) with probability |X ′|/|X|.

− Once at a leaf node X ∈ X `, we output a uniform random x ∼ X.

Potential function. We define a nonnegative potential function on the nodes of the tree. For each

part X ∈ X r, labeled (I ⊆ [n], α ∈ {0, 1}I), we define

D(X) := (n− |I|) logm− log |X| ≥ 0.

How does the potential change as we take a step starting at node X ∈ X r labeled (J, α)? If X has

one child, the value of D remains unchanged. Otherwise, we move to a child of X in two substeps.

− Substep 1: Recall that we partition X =
⊔
iX

i according to the 1st round of Rectangle Scheme

relative to free coordinates. That is, X i is further restricted on Ii ⊆ [n] r J to some value

αi ∈ [m]Ii . For a child X i labeled (J t Ii, α t αi) the potential change is

D(X i)−D(X) = (n− |J ∪ Ii|) logm− log |X i| − (n− |J |) logm+ log |X|

= log |X| − log |X i| − |Ii| logm

= log(|X|/|X>i|)− log(|X i|/|X>i|)− |Ii| logm

= log(|X|/|X>i|)− log Pr[X>i
Ii

= αi]− |Ii| logm

≤ log(|X|/|X>i|) + 0.95|Ii| logm− |Ii| logm

= δ(i)− 0.05|Ii| logm. (where δ(i) := log(|X|/|X>i|))

− Substep 2: Each X i gets split into two halves, X i,top and X i,bot. Moving to either child makes

the potential increase by exactly 1 bit.

In summary, when we take a step to a random child in our random walk, the overall change in

57

potential is itself a random variable, which is at most

δ − 0.05|I| logm+ 1, (6.3)

where (I, ·) is the label of the random child, and δ := δ(i) is the random variable generated by

choosing i with Pr[i = i] = |X i|/|X|. Summing Eq. 6.3 over ` many rounds, we see that ` steps of

the random walk takes us to a node Xj ∈ X ` with random index j, which is labeled (Ij , αj), and

which satisfies D(Xj) ≤
∑

r∈[`](δr + 1)− 0.05|Ij| logm where δr is the “δ” variable corresponding

to the r-th step. Since the potential is nonnegative, we get that

|Ij | ≤
20

logm
·
∑
r∈[`]

(δr + 1). (6.4)

Bounding this quantity is awkward since, in general, the variables δr are not mutually independent.

However, a standard trick to overcome this is to define mutually independent and identically

distributed random variables dr and couple them with δr so that δr ≤ dr with probability 1.

− Definition of dr: Sample a uniform real pr ∈ [0, 1) and define dr := log(1/(1 − pr)) and

couple with δr such that δr = δ(i) where i is such that pr falls in the i-th interval, assuming

we have partitioned [0, 1) into half-open intervals with lengths |X i|/|X| (where X1, X2, . . .

are the sets from Substep 1) in the natural left-to-right order. Now δr is correctly distributed

and δr ≤ dr with probability 1.

Note that E[2dr/2] =
∫ 1

0
1/(1− p)1/2dp = 2. For a large enough constant C > 0, we calculate

Pr
[∑

r∈[`] dr > C`
]

= Pr[2
∑
r∈[`](dr/2) > 2C`/2]

≤ E[2
∑
r∈[`](dr/2)]/2C`/2

=
(∏

r∈[`] E[2dr/2]
)
/2C`/2

= 2`/2−C`/2 ≤ 2−C`/3.

Plugging this estimate in Eq. 6.4 (using δr ≤ dr) we get that Pr[|Ij | > C ′ · `/ log n] < 2−` for a

sufficiently large C ′. This proves Eq. 6.2 and concludes the proof of the lemma.

58

6.2.2 Proof of Triangle Lemma (Lemma 6.4)

Identifying Yerr, Xerr. The column error set Yerr is already defined by Triangle Scheme. Note that

only one rectangle, [m]n × Yerr, is covered by the error columns. Claim 6.5 ensures that Yerr has

density at most 2−Ω(n2) < 2−k. The row error set Xerr is defined by Lemma 6.7 (for the given k).

Structured vs. error. Let
⊔
iR

i be the output of Triangle Scheme, and consider an Ri = X i × Y i

which is not covered by error rows/columns; in particular Ri ∈ Rfinal. Let Ii ⊆ [n] denote the

fixed coordinates of Ri such that X i
Ii

= αi for some αi ∈ {0, 1}Ii . From Claim 5.6 we have that

X i
[n]rIi is 0.95-dense. From (P4) and Lemma 6.7 we have |Ii| ≤ O(k/ log n). Moreover, we observe

that Y i = YIi,αi,γi r Yerr for some γi ∈ {0, 1}Ii (notation from Column Cleanup) since Rectangle

Scheme, and hence Triangle Scheme by extension, only partitions columns by fixing individual

gadget outputs. We have |YIi,αi,γi | ≥ 2mn−n by definition, and so |Y i| ≥ 2mn−2n is large enough: we

conclude that Ri is ρi-structured for ρi that equals γi on Ii and consists of stars otherwise.

Next, we locate the associated inner rectangle Li ⊆ Ri. All final rectangles output by Triangle

Scheme are such that |X(T∩Ri)| ≥ |X i|/2. That is, every top row in Ri,top has a nonempty

intersection with T . Hence the empty-vs-heavy property of Claim 6.5 says that for all x ∈ X i,top,

we have |T ∩ ({x} × Y i)| ≥ 2mn−n
2 . Moreover, note that X i,top is 0.9-dense on its free coordinates

[n] r Ii (we lose at most 1 bit of min-entropy compared to X i by Fact 5.5). We can now define

Li := X i,top × Y ′ ⊆ T ∩Ri where Y ′ is the set of the first (according to bT) 2mn−n
2 columns of Y i;

see Figure 6.1. This Li meets all the conditions for being ρi-structured.

Query alignment. For x ∈ [m]n rXerr, we define (Ix, αx) as the label of the unique part i(x) such

that x ∈ X i(x) ∈ X . By Lemma 6.7, |Ix| ≤ O(k/ log n). Every ρ-structured rectangle Rj := Xj×Y j

with Xj ⊇ X i(x) is, by (P4), such that fix ρ ⊆ Ix.

6.3 Reductions to CNF Search Problems

In this section, we show how to reduce the composed search problems S(F) ◦ gn to back to a CNF

search problem S(F ′) in a generic fashion, thereby proving Corollaries 6.2 and 6.3.

59

Lemma 6.8 (Generic Reduction to CNF Search). For all unsatisfiable n-variate k-CNFs F with

` clauses, S(F) ◦ Indnm reduces to S(F ′) (with a certain partition of variables) for an explicit

unsatisfiable 2mn-variate 3k-CNF F ′ with ` ·mk clauses.

The key property of an n-variable search problem S ⊆ {0, 1}n ×O that facilitates an efficient

reduction to a CNF search problem is having a low certificate (a.k.a. nondeterministic query)

complexity. A certificate for (z, o) ∈ S is a partial assignment ρ ∈ {0, 1, ∗}n such that z is consistent

with ρ and o is a valid output for every input consistent with ρ; in short, z ∈ C−1
ρ (1) ⊆ S−1(o).

A certificate for z is a certificate for (z, o) ∈ S for some o ∈ S(x). The certificate complexity of z

is the least width of a certificate for z. The certificate complexity of S is the maximum over all

z ∈ {0, 1}n of the certificate complexity of z.

It is easy to see that S(F) for any k-CNF contradiction F =
∧
iDi has certificate complexity at

most k, with a width-k certificate ρ such that Cρ = ¬Di that certifies all z ∈ D−1
i (0) = S(F)−1(i)

for each i. The following lemma establishes a converse.

Lemma 6.9 (cf. [LNNW95]). If S ⊆ {0, 1}n ×O has nondeterministic query complexity k, then

S reduces to S(F) for some k-CNF n-variate contradiction F .

Proof. We can pick a collection C of width-k certificates, one for each z ∈ {0, 1}n. The k-CNF

formula F is then defined as
∧
ρ∈C ¬Cρ. Any solution to S(F) points us to a certificate ρ of S and

hence a solution to S.

For the purposes of query complexity, there are two ways to represent the first argument

x ∈ [m] to the index function Indm : [m]× {0, 1}m → {0, 1} as a binary string. The simplest is to

write x as a binary string in {0, 1}logm. Under this convention, Indm has certificate complexity

logm + 1. If S ⊆ {0, 1}n ×O has certificate complexity k, the composed problem S ◦ Indnm has

certificate complexity k(logm+ 1) (by composing certificates). For applications, this means that if

we start with a k-CNF contradiction F , we may reduce S(F) ◦ Indnm to solving S(F ′) where F ′ is

a k(logm+ 1)-CNF contradiction over O(mn) variables.

A better representation [BHP10, dRNV16], which does not blow up the certificate complexity

(or CNF width), is to write x as an m-bit string of Hamming weight 1 (the index of the unique

60

1-entry encodes x ∈ [m]). Under this convention, Indm : {0, 1}m × {0, 1}m → {0, 1} becomes a

partial function of certificate complexity 2. Hence, if S has certificate complexity k, the partial

composed problem S ′ := S ◦ Indnm has certificate complexity 2k. Also note that under this encoding

the query complexity of the gadget blows up to m + 1. We would like a total search problem,

preferably without blowing up the query complexity of each gadget.

Proof of Lemma 6.8. We slightly change the encoding of x without making it any easier to solve

for any of the dag models. Specifically, for inputs x ∈ ({0, 1}m)n and y ∈ ({0, 1}m)n to Akbar and

Birbal, we will say that z ∈ {0, 1}n is consistent with (x, y) if for each i ∈ [n], there is an index

k ∈ [m] such that xi,k−1 = 0, xi,k = 1 and yi,k = zi, where we let xi,0 = 0 by convention. We

define our total search problem Stot ⊆ {0, 1}mn × {0, 1}mn × O via all the width-3k certificates

that certify that some z consistent with (x, y) violates some clause of F ; there are a total of ` ·mk

such certificates. We have that Stot is at least as hard as S(F) ◦ Indnm for any of the dag models,

since Akbar can map x′ ∈ [m]n to an x ∈ ({0, 1}m)n such that for each i, xi,1 = . . . = xi,k−1 = 0

and xi,k = . . . = xi,m = 1 for k = x′i. This ensures that the only z consistent with (x, y) is precisely

z = Indnm(x′, y). Thus, any output o ∈ Stot(x, y) is such that o ∈ S(F)(x′, y).

Hence, by Lemma 6.9, we can reduce (in the context of communication) S(F) ◦ Indnm to solving

S(F ′) where F ′ is a 3k-CNF contradiction over 2mn variables and ` ·mk clauses.

Proof of Corollary 6.2. Starting with n-variate k-CNF F , we reduce to N -variate 3k-CNF F ′ as in

Lemma 6.8 (for N = 2mn = 2n∆+1), which along with the bipartition of the input variables to

Akbar and Birbal we interpret as a communication search problem F ′′. We have,

Cutting Planes length of F ′ = thresh-dag(S(F ′))

≥ tri-dag(S(F ′′)) . . . (from Eq. 4.1)

≥ tri-dag(S(F) ◦ Indnm) . . . (by Lemma 6.8)

≥ nΩ(w(S(F))) . . . (by Theorem 6.1)

Proof of Corollary 6.3. For any field F, we have from Lemma 5.10 and Remark 5.11, that there

exists an n-variate k-CNF F = FG,F that requires resolution width of Ω(n), but has NSF-refutations

61

of degree O(k). In fact, k = O(1).

From Corollary 6.2, we have that the associated F ′, obtained via reduction from S(F) ◦ Indnm

to S(F ′), requires Cutting Planes refutations of length 2n
Ω(1) .

Finally, observe that NSF behaves well under the composition as described in the proof of

Lemma 6.8. Firstly, observe that for the composition described, there is always at least one

z consistent with (x, y) which can be obtained via binary search on x. Thus, it takes only

logm + 1 = O(log n) (since m = n∆) queries to find a canonical z consistent with (x, y). Thus,

we can write each variable zi of this canonical z as a degree O(log n) polynomial in the variables

(xi, yi). Thus, NSF(F ′) ≤ NSF(F) ·O(log n) ≤ O(log n).

62

Chapter 7

Monotone Span Program Lower Bounds

In this chapter, we prove an exponential lower bound on the size of monotone Fp-span programs

for computing a function computable by linear sized R-span programs.

Theorem 7.1. For any prime p, 3Lin(R)-Satn requires monotone Fp-span programs of size 2n
Ω(1).

Pitassi and Robere [PR18] have already exhibited functions (in hindsight, 3Lin(Fp)-Satn)

computable by linear sized monotone Fp span programs, but requires exponential sized monotone

R-span programs, and also monotone Fq-span programs (for prime q 6= p). Our result proves a

separation in the other direction.

Theorem 7.1 is unrelated to the lifting theorems proved in Chapters 5 and 6. Instead we

use a lifting theorem, proved by Pitassi and Robere [PR18], that characterizes the monotone

F-span program size of certain functions in terms of the F-Nullstellensatz degree of a corresponding

unsatisfiable CNF. Thus, we first provide an unsatisfiable CSP that requires large NSFp-degree

refutations, but has small NSR-degree refutations and then lift this result to monotone span

programs.

7.1 Nullstellensatz Lower Bounds

Following notations in Section 5.3.2, we will show the following.

63

Lemma 7.2. For any F ∈ {Fp : prime p}∪{R}, there exists an unsatisfiable 3Lin(R)-CSP F such

that NSFp(Fbool) ≥ nΩ(1).

To this end, we consider an R-linear system F = FG,U,R that generalizes FG,R defined in the

context of Lemma 5.10:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1U(v), (FG,U,R)

where 1U : V → {0, 1} is the indicator function for U ⊆ V . This is unsatisfiable as long as U 6= ∅.

Combinatorially, the CSP Search Problem S(Fbool) can be interpreted as an End-of-`-Lines

problem for ` := |U |: given a directed graph (encoded by the z(v,u) variables) with distinguished

source vertices U , find a sink or a source not in U . It is important to have many distinguished

sources, |U | ≥ nΩ(1), as otherwise Fbool has small NSZ-degree refutations1 and hence Fbool has low

Fp-Nullstellensatz degree refutations as well.

To show NSFp(Fbool) ≥ nΩ(1) for an suitable choice of F = FG,U,R, we adapt a result of Beame

and Riis [BR98]. They proved an Fp-Nullstellensatz degree lower bound for a related bijective

pigeonhole principle Pn whose underlying graph has unbounded degree; we obtain a bounded-degree

version of their result by a reduction.

Lemma 7.3 ([BR98, §8]). Fix a prime p. The following system of (unsatisfiable) polynomial

equations over variables {xij : (i, j) ∈ D × R}, where |D| = n and |R| = n − nΩ(1), requires

Fp-Nullstellensatz degree nΩ(1):

(i) ∀i ∈ D :
∑

j∈R xij = 1 “each pigeon occupies a hole”,

(ii) ∀j ∈ R :
∑

i∈D xij = 1 “each hole houses a pigeon”,

(iii) ∀i ∈ D, {j, j′} ∈
(
R
2

)
: xijxij′ = 0 “no pigeon occupies two holes”,

(iv) ∀j ∈ R, {i, i′} ∈
(
D
2

)
: xijxi′j = 0 “no hole houses two pigeons”,

(v) ∀(i, j) ∈ D ×R : x2
ij − xij = 0 “Boolean axioms”.

(Pn)

1jumping a little ahead, one way to derive this is to use a result of Hollender and Goldberg [HG18] that
Multi-Source-End-of-Line is in PPADdt and combine it with the observation that PPAD–decision trees yield low
NSZ-degree refutations (Theorem 8.19).

64

G :

U

xijD R

Figure 7.1: Graph G = (V,E), a bounded-degree version of the biclique D ×R.

We construct a natural bounded-degree version G of the complete bipartite graph D ×R and

show that each constraint of Fbool for F = FG,U,R is a low-degree Fp-Nullstellensatz consequence of

Pn. Hence, if Fbool admits a low-degree Fp-Nullstellensatz proof, so does Pn (see, e.g., [BGIP01,

Lemma 1] for composing proofs), which contradicts Lemma 7.3.

The directed graph G = (V,E) is obtained from the complete bipartite graph D×R as illustrated

in Figure 7.1 (for |D| = 4 and |R| = 3). Specifically, each vertex of degree d in D ×R is replaced

with a binary tree of height log d. The result is a layered graph with the first and last layers

identified with D and R, respectively. We also add a “feedback” edge from each vertex in R to

a vertex in D according to some arbitrary injection R → D (dashed edges in Figure 7.1). The

vertices in D not incident to feedback edges will form the set U (singleton in Figure 7.1).

This defines a Boolean 3-CSP Fbool for F = FG,U,R over variables {ze : e ∈ E}. In order to

reduce Pn to Fbool, we define an affine map between the variables xij of Pn and ze of Fbool. Namely,

65

for a feedback edge e we set ze := 1, and for every other e = (v, u) we set

z(v,u) :=
∑

i∈Dv j∈Ru

xij,

where Dv := {i ∈ D : v is reachable from i without using feedback edges},

Ru := {j ∈ R : j is reachable from u without using feedback edges}.

Note in particular that this map naturally identifies the edge-variables ze in the middle of G (yellow

edges) with the variables xij of Pn. The other variables ze are simply affinely dependent on the

middle edge-layer. We then show that from the equations of Pn we can derive each constraint of

Fbool. Recall that the constraint for v ∈ V requires that the out-flow
∑

(v,u)∈E z(v,u) equals the

in-flow
∑

(u,v)∈E z(u,v) (plus 1 iff v ∈ U).

v /∈ D ∪R: Suppose v is on the left side of G (right side is handled similarly) so that z(v,u) =∑
j∈Ru xij for some fixed i ∈ D. The out-flow is

∑
u : (v,u)∈E

z(v,u) =
∑

u : (v,u)∈E

∑
j∈Ru

xij =
∑
j∈Rv

xij. (7.1)

On the other hand, v has a unique incoming edge (u∗, v) so the in-flow is given by∑
u : (u,v)∈E z(u,v) = z(u∗,v) =

∑
j∈Rv xij, which equals Eq. 7.1.

v ∈ D: (Case v ∈ R is similar). The in-flow equals 1 (either v ∈ U so that we have the +1

term from 1U(v); or v /∈ U and the value of a feedback-edge variable gives +1). The

out-flow equals
∑

j∈Rv xij =
∑

j∈R xij = 1 by Eq. 7.1, Rv = R, and axiom (i) of Pn.

Finally, we can verify the boolean axioms z2
e = ze. This holds trivially for feedback edges e. Let

e = (v, u) be an edge in the left side of G (right side is similar) so that ze =
∑

j∈Ru xij for some

fixed i ∈ D. We have z2
e = (

∑
j∈Ru xij)

2 =
∑

j∈Ru x
2
ij =

∑
j∈Ru xij = ze by (iii) and (v) axioms of

Pn. This concludes the proof of Lemma 7.2.

66

7.2 Lifting Nullstellensatz to Monotone Span Programs

(Monotone) Span Programs are characterized by the communication model of Algebraic Partitions

that solve the corresponding (monotone) Karchmer Wigderson search problems. This is analogous

to characterization of circuits by rectangle-dags (cf. Lemma 4.4).

Fix a two-party search problem S ⊆ X × Y × O. We say that a matrix M ∈ FX×Y is

monochromatic if there is some o ∈ O such that o ∈ S(x, y) for all (x, y) in the support of M , i.e.

M(x, y) 6= 0. For any field F, an F-partition of a search problem S is a setM of rank-1 matrices

M ∈ FX×Y such that
∑

M∈MM = 1 and each M ∈ M is monochromatic for S. The size of the

partition is |M|. The F-partition number χF(S) is the least size of an F-partition of S. Let SPF

(and mSPF) denote the (monotone) span program complexity.

Lemma 7.4 ([Gál01]). For any boolean function f and any field F, SPF(f) = χF(KW(f)). Fur-

thermore, if f is monotone then mSPF(f) = χF(mKW(f)).

With this connection in place, Pitassi and Robere [PR18] showed a lifting theorem characterizing

algebraic F-partition number of a composed search problem S(F) ◦ Indnm in terms of NSF(F).

Theorem 7.5 ([PR18]). Let m ≥ n∆ for a sufficiently large ∆. For any unsatisfiable CNF F ,

∀F ∈ {Fp : prime p} ∪ {R} : χF(S(F) ◦ Indm) = nΘ(NSF(F))

The lifting theorem of Pitassi and Robere [PR18] was originally not stated for the Index gadget,

but rather for any “good” gadget on O(log n) bits of input. However, the above can be derived

since any such gadget can be embedded into a poly(n) sized Index gadget. We state the above

version as it makes it convenient to prove Theorem 7.1.

Proof of Theorem 7.1. We start with the 3Lin(R)-CSP F := Fbool considered in Lemma 7.2. From

67

Lemma 5.9, we have that S(F) ◦ Indnm reduces to mKW(3Lin(R)-Satmn). Thus, we have,

mSPFp(3Lin(R)-Satmn) = χFp(mKW(3Lin(R)-Satmn)) . . . (from Lemma 7.4)

≥ χFp(S(F) ◦ Indnm) . . . (from Lemma 5.9)

≥ nΩ(NSFp (F)) . . . (by Theorem 7.5)

≥ 2n
Ω(1)

. . . (by Lemma 7.2)

This gives us the desired lower bound on the monotone Fp-span program size of 3Lin(R)-Satn by

reparameterizing the number of variables.

68

Chapter 8

TFNP in Query & Communication

In this chapter, we describe an intimate connection between the lifting theorems studied in this

thesis, and the query and communication analogs of sub-classes of TFNP, the class of all total search

problems verifiable in polynomial time. This connection is driven the following key observations:

. Lemma 6.9 : CNF search problems S(F) are complete for query-TFNP.

. Lemma 5.8 : Monotone KW search problems mKW(f) are complete for communication-TFNP.

It turns out that we can (in some cases) view proofs of refutations as “query algorithms”. We

already saw a glimpse of this in this thesis, namely, that dag-like resolution refutations of F are

equivalent to conjunction-dags solving S(F). In the language of TFNP, dag-like resolution can

be viewed as the query analog of the class PLS. Additionally, the minimal depth of resolution

refutations can be viewed as the query analog of the class FP.

Similarly, it turns out (again, in some cases) that one can view computational models as

“communication protocols”. We already saw two examples in this thesis:

− Monotone Formulas computing f are equivalent to communication protocols solving mKW(f).

Tree-like protocols can be viewed as the communication analog of the class FP.

− Monotone Circuits computing f are equivalent rectangle-dags solving mKW(f). Rectangle-

dags can be viewed as the communication analog of the class PLS.

69

M Query Communication Reference

FP Resolution depth Formula size Theorem 8.11

PLS Resolution width Circuit size Theorem 8.18

PPAp Fp-Nullstellensatz degree Fp-Span Program size Theorem 8.12

Table 8.1: Characterizations of query and communication analogs of TFNP subclasses. The colored
ones are new characterizations proved in this thesis.

We contribute one more such characterization (see Table 8.1): Communication-PPA captures

F2-span programs and Query-PPA captures F2-Nullstellensatz. More generally, we consider the class

PPAp (class based on modulo-p arguments) and show that Query/Communication-PPAp captures

Fp-Nullstellensatz/Fp-span programs.

In this chapter, we define the query and communication analogs of several TFNP subclasses (§8.1)

and describe these characterizations in more detail (§8.2). With this, we can interpret the lifting

theorems discussed in this thesis as lifting theorems for these TFNP sub-classes. This allows us to

prove separations between communication analogs of these sub-classes (§8.3).

8.1 TFNP Class Definitions

Megiddo and Papadimitriou [MP91] initiated the study of total NP search problems (TFNP), that

is, search problems that have a solution for every input and where a given solution can be efficiently

checked for validity. By now, this theory has flowered into a sprawling jungle of widely-studied

complexity classes (such as PLS [JPY88], PPA/PPAD/PPP [Pap94], CLS [DP11]) that serve to

classify the complexities of many natural search problems. The classes are defined based on

the existential mathematical principle that ensures totality of the corresponding search problem.

See [GP18a, SZZ18] for detailed surveys.

Any complexity class defined in the language of Turing machines can be analogously defined

in query complexity (cf. [Ver99]) and in communication complexity (cf. [BFS86]). It is well

known that separations between query complexity classes imply oracle separations between the

70

corresponding Turing machine classes, and separations between communication complexity classes

imply algebraic oracle separations between the corresponding Turing machine classes [AW09].

Every TFNP subclass in literature is defined as a total search problem on an (exponentially

large) object (such as a graph) that is succinctly encoded by the input, typically interpretted as

a circuit. For each TFNP subclass, there is a canonical definition of its communication or query

analog: we simply let communication protocols or decision trees (rather than circuits) implicitly

define the objects that appear in the original Turing machine definition.

Each communication class Mcc (resp. query class Mdt) is defined via a M–protocol (resp. M–

decision tree) that solves a two-party search problem S ⊆ X × Y ×O (resp. S ⊆ {0, 1}n ×O). We

use Mcc(S) to denote the least cost of an M–protocol that solves S (analogously for Mdt(S)). With

a slight abuse of notation, the class Mcc (resp. Mdt) is then defined as the set of all search problems

S that have Mcc(S) ≤ poly log(log(|X | · |Y|)) (resp. Mdt(S) ≤ polylog(n)).

Below, we define the communication analogs of various TFNP-subclasses with the under-

standing that a query version can be obtained by replacing mentions of a protocol Πv(x, y)

by a decision tree Tv(z); the cost of a M–decision tree is defined as maxv |Tv| where |Tv| :=

maxz #(queries made by Tv(z)). In what follows, sink means a vertex with out-degree 0 and

in-degree > 0, and source means a vertex with in-degree 0 and out-degree > 0. We also define weak

sink to mean a vertex with out-degree 0 (but in-degree may be 0).

Definition 8.1. (FP – Search problems solvable in Polynomial time)

Syntax: Π is a (deterministic) protocol outputting values in O.

Correctness: Π(x, y) ∈ S(x, y).

Cost: |Π| := communication cost of Π.

Definition 8.2. (TFNP – Search problems solvable in Non-deterministic Polynomial time)

Syntax: Π is a non-deterministic protocol, on each path either aborts or outputs value in O.

Correctness: o ∈ S(x, y), for output o on any non-aborting path of Π(x, y).

Cost: |Π| := non-deterministic communication cost of Π.

71

We observed that CNF search problems S(F) are complete for TFNPdt (Lemma 6.9) and Monotone

KW search problems mKW(f) are complete for TFNPcc (Lemma 5.8). Thus, the study of TFNP

and its subclasses is very natural in our context. We now proceed to define the communication

analogs of various TFNP sub-classes (with query analogs defined similarly).

Definition 8.3. (PPA – Polynomial Parity Arguments)

Principle: A matching on an odd sized graph has isolated vertices.

Syntax: V is a vertex set with |V | 6= 0 (mod 2). For each v ∈ V : ov ∈ O and Πv is a protocol

outputting another vertex Πv(x, y) ∈ V .

Object: Matching graph Gx,y = (V,E) where {v, u} ∈ E iff v = Πu(x, y) and u = Πv(x, y).

Correctness: If v has degree 0 in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 8.4. (PLS – Polynomial Local Search)

Principle: Every dag has a weak sink.

Syntax: V is a vertex set. For each v ∈ V : ov ∈ O and Πv is a protocol outputting a pair of

successor and potential (sv(x, y), `v(x, y)) ∈ V × Z.

Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and `v(x, y) > `u(x, y).

Correctness: If v is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

72

Definition 8.5. (PPP – Polynomial Pigeonhole Principle)

Principle: Pigeon-hole principle.

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each unordered pair

{v, u} ∈
(
V
2

)
: o{v,u} ∈ O. For each v ∈ V : Πv is a protocol outputting values in

V r {v∗}.

Object: Bipartite graph Gx,y = (V × (V r {v∗}), E) where (v, w) ∈ E iff Πv(x, y) = w.

Correctness: If (v, w) and (u,w), v 6= u, are edges in Gx,y, then o{v,u} ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 8.6. (PPAD – Polynomial Parity Arguments on Directed graphs)

Principle: Every directed graph with a source must have another source or a sink.

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and Πv is

a protocol outputting a pair of successor and predecessor (sv(x, y), pv(x, y)) ∈ V × V .

Object: Directed graph Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and pu(x, y) = v.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 8.7. (PPADS – Polynomial Parity Arguments on Directed graphs (Sink))

Principle: Every directed graph with a source must have a sink.

Syntax: Same as in Definition 8.6.

Object: Same as in Definition 8.6.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

We also study PPAq, which is amodulo-q analog of PPA defined, in passing, by Papadimitriou [Pap94].

A thorough study of PPAq has been done in an ongoing work [GKSZ19], which studies properties

of this class in the Turing machine world and gives a natural complete problem for the same.

73

Definition 8.8. (PPAq – Polynomial “Parity” Arguments modulo-q)

Principle: A q-dimensional matching on a non-multiple-of-q sized graph has isolated vertices.

Syntax: V is a vertex set with |V | 6= 0 (mod q). For each v ∈ V : ov ∈ O and Πv is a protocol

outputting a subset of q − 1 other vertices Πv(x, y) ⊆ V .

Object: q-dim matching Gx,y = (V,E) where {v1, . . . , vq} ∈ E iff vi ∈ Πvj(x, y) for each i 6= j.

Correctness: If v has degree 0 in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

While PPAq can be defined for all integers q ≥ 2, it is shown in [GKSZ19] that PPAq can be

characterized in terms of PPAp for all the prime divisors of q. In particular, for any constant q,

it is shown that PPAcc
q (S) = Θ(minp∈Pq PPAcc

p (S)), where Pq is the set of all prime divisors of q

(similarly for the query analogs). Thus, it suffices to study only PPAp for prime p.

In addition to these well-studied classes, we also define the classes EoPL and SoPL below. EoPL

is defined as the class of search problems reducible to End-of-Potential-Line [FGMS18], which

in turn is equivalent to End-of-Metered-Line [HY17], a problem in CLS [DP11]. We study EoPL

instead of CLS as it is combinatorial and more amenable to defining query/communication analogs.

The class SoPL, based on the problem Sink-of-Potential-Line, is newly considered here and

is related to EoPL in the same way as PPADS is related to PPAD in that only sinks are valid solutions.

Definition 8.9. (EoPL – End of Potential Line)

Principle: Every potential-ed directed graph with a source must have another source or a sink.

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and Πv

is a protocol outputting a tuple (sv(x, y), pv(x, y), `v(x, y)) ∈ V × V × Z.

Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u, pu(x, y) = v, `v(x, y) > `u(x, y).

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

74

Definition 8.10. (SoPL – Sink of Potential Line)

Principle: Every potential-ed directed graph with a source must have a sink.

Syntax: Same as in Definition 8.9.

Object: Same as in Definition 8.9.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

8.2 Characterizations

The most basic characterization is using query and communication analogs of FP.

Theorem 8.11 (FP, Resolution Depth and Formulas).

1. For any unsatisfiable CNF F : FPdt(S(F)) = resolution depth(F).

2. For any monotone function f : FPcc(mKW(f)) = Θ(log(monotone formula size(f))).

Moreover, for any function f : FPcc(KW(f)) = Θ(log(formula size(f))).

Proof. Part (2.) is precisely Theorem 2.7 [KW88] combined with Lemma 2.8. Part (1.) follows by

first considering tree-like resolution (which doesn’t increase depth) and observing that top-down

version of tree-like resolution is a decision tree (cf. Defns. 4.1, 4.2).

We describe more such characterizations of proof systems in terms of query analogs, and of

computational models in terms of communication analogs of TFNP subclasses. See Figure 8.1 for

an illustration of the relative positioning of TFNP subclasses and the characterizations discussed

here.

8.2.1 PPAp, Fp-Nullstellensatz and Fp-Span Programs

In this section, we prove our characterizations for PPA and more generally for PPAp. Since

PPA = PPA2, we only state and prove it for PPAp.

Theorem 8.12 (PPAp, Nullstellensatz and Span Programs). For any prime p,

75

FP

EoPL

SoPL PPAD

PPADS

PLS PPP PPAp

TFNP

comparator circuits ≤ ≤ NSZ degree

=
formulas

resolution depth

=circuits
resolution width

=
Fp–span programs

NSFp
degree

Figure 8.1: The landscape of total search problem classes (uncluttered by the usual ‘cc’, ‘dt’
superscripts). A solid arrow M1 → M2 denotes M1 ⊆ M2, and a dashed arrow M1 99K M2 denotes a
separation in the query world Mdt

1 * Mdt
2 (in fact, an exponential separation). The yellow arrows are

separations that can also be shown in the communication world, namely Mcc
1 * Mcc

2 . Communication
analogs of some classes characterize models of computation (printed in blue) and Query analogs
characterize proof systems (printed in green).

1. For any unsatisfiable CNF F : PPAdt
p (S(F)) = Θ(NSFp(F)).

2. For any monotone function f : PPAcc
p (mKW(f)) = Θ(log(mSPFp(f))).

Moreover, for any function f : PPAcc
p (KW(f)) = Θ(log(SPFp(f))).

Communication PPAp = Fp-span programs

We first show that communication PPAp captures Fp-span program size. At a high level, constructing

a span program from a PPAp–protocol is almost immediate from the characterization of span program

size (Lemma 7.4) due to Gál [Gál01]. The other direction is more involved and proceeds in two steps:

(1) we show that 3Lin(Fp)-Satn is complete for (monotone) Fp-span programs under (monotone)

projections, and then (2) give a PPA–protocol for 3Lin(Fp)-Satn.

76

Span programs from PPAp–protocols. To show log mSPF2(f) ≤ O(PPAcc
p (mKW(f))) for a

boolean function f , we apply the below lemma with S := mKW(f) and use the characterization

mSPFp(f) = χFp(mKW(f)) in Lemma 7.4. The non-monotone case is similar.

Lemma 8.13. For any search problem S ⊆ X × Y ×O we have logχFp(S) ≤ O(PPAcc
p (S)).

Proof. From a PPAp–protocol Π := (V, ov,Πv) we can obtain a nondeterministic protocol Γ for S.

The protocol Γ computes as follows on input (x, y): guess a vertex v ∈ V ; if deg(v) = 0 in Gx,y,

then accept (with solution ov); otherwise reject. In particular, Γ runs Πv(x, y) and then Πvi(x, y)

for each vertex vi ∈ Πv(x, y). The communication cost is thus at most p times that of Π. By

virtue of a PPAp–protocol, it follows that Γ accepts each input (x, y) a number of times that equals

|V | (mod p). By treating each rectangle in the nondeterministic protocol as a matrix containing

entries |V |−1 (mod p) in its support, we get an Fp-partition for S of size exp(O(PPAcc
p (S))).

PPAp–protocols from span programs. As mentioned above, the converse is more involved.

We begin by showing that 3Lin(Fp)-Satn is complete for Fp-span programs under projections.

Lemma 8.14. Let f be a (monotone) boolean function computable by a (monotone) Fp-span

program of size s. Then f can be written as a (monotone) projection of 3Lin(Fp)-Sats2.

Proof. LetM be an Fp-span program for f . We may assume wlog that it is an Fs×sp matrix with each

row labeled by an input literal, zi or ¬zi (or just zi in the monotone case). By a change of basis we

may assume that, instead of the all-1 row vector, the target is to span the row vector (0, 0, . . . , 0, 1).

Let us thus write M = [A b] where A is an s × (s − 1) matrix and b is an s × 1 vector. This

suggests the following alternative interpretation of the span program M : given an input z ∈ {0, 1}n,

accept if and only if the corresponding system of linear equations A(z)w = b(z) consistent with z

is unsatisfiable; observe that this is witnessed by some linear combination of rows yielding the

vector (0, 0, . . . , 0, 1). This is nearly a projection of 3Lin(Fp)-Sat, except, the number of variables

occurring in each linear equation in Aw = b may be greater than 3. This is straightforward to fix by

a standard reduction. For example, given the linear constraint a1v1 +a2v2 +a3v3 +a4v4 = a0 we can

introduce a new auxiliary variable u and two equations a1v1 +a2v2 +u = 0 and −u+a3v3 +a4v4 = a0.

In general, we replace each equation on k > 3 variables with a collection of k − 2 equations by

77

introducing k − 3 auxiliary variables to create an equisatisfiable instance. The final instance has at

most s2 variables and s2 equations.

The following lemma completes the proof that any span program implies a PPAp–protocol. We

prove the lemma only for the monotone game mKW(f) as it implies the same bound for KW(f).

Lemma 8.15. PPAcc
p (mKW(3Lin(Fp)-Satn)) ≤ O(log n).

Proof. Write Av = b for the list of all N := O(n3) many 3Lin(Fp)-equations over n variables

v1, . . . , vn. In the game mKW(3Lin(Fp)-Satn) Alice holds a subset x ⊆ [N] of the rows of Av = b

defining an unsatisfiable system Axv = bx, and Bob holds a subset y ⊆ [N] defining a satisfiable

system Ayv = by. Their goal is to find an equation which is included in Alice’s system but not in

Bob’s. We fix henceforth some satisfying assignment w ∈ Fnp to Bob’s system. It suffices to find an

equation in Alice’s system that w does not satisfy.

For simplicity, we will assume that Alice’s system Axv = bx satisfies:

1TAx = (0, 0, . . . , 0) and 1T bx = 1 (*)

This is indeed without loss of generality: For any unsatisfiable system of equations {aiv = bi}i∈[m],

there exists λ ∈ Fmp such that
∑

i∈[m] λiai = (0, 0, . . . , 0) and
∑

i∈[m] λibi = 1. Alice can discard all

equations corresponding to λi = 0. Moreover, for each non-zero λi she can multiply the equation

aiv = bi by λi to get a different linear system satisfying the requisite condition above. Alice’s

system of equations remains unsatisfiable and moreover any equation not satisfied by Bob’s w

immediately corresponds to an unsatisfied equation in the original system.

The PPAp–protocol is defined as follows. The vertex set V will contain (n+ 1)Np+ 1 vertices.

Namely, (n+ 1)p vertices for each i ∈ [N] and one additional distinguished vertex v∗. We think of

the (n+ 1)p vertices for each i, as p vertices for each of n variables and p vertices for the constant

term. All these (n+ 1)p vertices are labeled by the corresponding equation.

In order to describe the PPAp–protocol Π = {Πv}v, we first describe the p-dimensional matching

on any input (x, y) and then turn to describe how such a matching can be encoded via protocols.

Assume that i-th equation in Av = b is given by ai,1v1 + . . .+ ai,nvn = ai,0 (actually, for each i, we

78

have that at most three of the ai,j’s are non-zero. But we use this notation for simplicity). We

consider hyperedges of three categories as follows:

. Non-participating equations: For each i /∈ x ⊆ [N] that does not participate in Alice’s system of

equations, we simply partition the corresponding (n+1)p vertices into n+1 p-uniform hyperedges.

. Intra-equations: For equations i ∈ x that do participate in Alice’s system of equations,

• Constant terms: Among the p vertices correponding to ai,0, we reserve ai,0 vertices for potential

inter-equation hyperedges. From (*), we have
∑

i∈x ai,0 = 1. Thus, in addition to the

distinguished vertex, we have totally 0 (mod p) many vertices left out, which we can partition

canonically into p-uniform hyperedges.

• Non-constant terms: Among the p vertices corresponding to ai,jvj , we reserve ai,jwj vertices for

potential inter-equation hyperedges. From (*), for any variable vj we have that,
∑

i∈x ai,j = 0.

Thus, for any variable vj we have left out 0 (mod p) vertices and hence we can partition the

remaining vertices into p-uniform hyperedges.

. Inter-equations: For equation i ∈ x, we have 0 mod p vertices left out above iff
∑

j ai,jwj = ai,0.

Thus, if equation i is satisfied by Bob’s input w, we simply partition the remaining vertices into

p-uniform hyperedges. Else, we simply leave them isolated.

It is easy to see that the isolated vertices are precisely the ones corresponding to equations in

Alice’s system that are unsatisfied by Bob’s assignment w. We sketch how such a protocol can

be implemented by a PPAcc
p –protocol of cost O(log n). Consider a vertex (among p of them)

corresponding to the term ai,jvj, with ai,j 6= 0 (or even the term ai,0). If equation i does not

participate in x, then Alice can simply add a p-uniform hyperedge around the p vertices corresponding

to ai,jvj and no communication is required. If equation i does participate in x, Alice sends the

variables participating in equation i to Bob and he responds with their values in w. This allows

Alice to decide all the inter-equation hyperedges corresponding to the i-th equation and moreover all

the intra-equation hyperedges corresponding to variables participating in equation i. In particular,

Alice can decide the hyperedge containing the given vertex.

79

Query PPAp = Fp-Nullstellensatz

We now show that query PPAp captures Fp-Nullstellensatz degree. Showing that Fp-Nullstellensatz

degree lower bounds PPAdt
p complexity follows by generalizing the proof in Beame et al. [BCE+98]

for the case of p = 2. More importantly, we show the (less trivial) converse.

NS refutations from PPAp–decision trees. The following is a query analog of Lemma 8.13.

Lemma 8.16. NSFp(F) ≤ O(PPAdt
p (S(F))) for any unsatisfiable k-CNF formula F .

Proof. Suppose F :=
∧
i∈[m]Ci, and let pi be the natural polynomial encoding of Ci so that pi(z) = 0

iff Ci(z) = 1. Fix a PPAp–decision tree T := (V, {ov, Tv}v) solving S(F) with cost d := PPAdt
p (S(F)).

Let |V | ≡ t (mod p), where t 6= 0. For each v ∈ V , we can define a depth-pd decision tree Sv such

that Sv(z) = 1 if deg(v) = 0 in Gz and Sv(z) = 0 otherwise. (First run Tv(z) and then Tu(z) for the

p− 1 potential neighbors u ∈ Tv(z).) We can then convert each Sv into a degree-pd Fp-polynomial

sv in the standard way (sv is the sum over all accepting paths of Sv of the product of the literals,

zi or (1− zi), recording the query outcomes on that path). By virtue of a PPAp–decision tree, the

number of Sv which accept z is ≡ t mod p. Thus over Fp, we have that
∑

v∈V sv(z) = t for all z.

Moreover, we have that piv(z) = 0⇒ sv(z) = 0 where iv is such that ov = Civ ; this is because sv is

only supported on inputs z for which ov = Civ is feasible (i.e., Civ(z) = 0 and piv(z) = 1). Thus we

may factor each sv as qvpiv for some qv. Hence we have our refutation,
∑

v∈V qvpiv = t. Finally, for

q′v := t−1 · qv, we get
∑

v∈V q
′
vpiv = 1.

PPAp–decision trees from NS refutations. We now prove the converse.

Lemma 8.17. PPAdt
p (S(F)) ≤ NSFp(F) for any unsatisfiable k-CNF formula F .

Proof. Suppose F :=
∧
i∈[t] Ci, and let pi be the natural polynomial encoding Ci. For d := NSFp(F),

let
∑

i∈[t] qipi + 1 = 0 be the degree-d Fp-Nullstellensatz refutation of F .

We define a cost-d PPAp–decision tree T := (V, {ov, Tv}v) solving S(F). The vertices V will be

grouped into t+ 1 groups V0, V1, V2, . . . , Vt. The group V0 will contain only one vertex v∗, which we

think of as associated with the special constant-1 term of the refutation (the label ov∗ is arbitrary).

80

For group Vi, consider expanding the polynomial fi := qipi into a sum of monomials. We call a

monomial “basic” if its constant term is 1 (eg. z1z2 is basic, whereas 2z3z4 is not). For ease of

notation, let’s write fi =
∑

m∈M ci,m ·m, whereM is the set of all basic monomials of degree at

most d (note: some coefficients might be zero). Also, let f0 = 1. The group Vi will contain a

total of p|M| many vertices, in particlar, p vertices associated with each basic monomial m ∈M.

Thus, we have |V | = tp|M|+1 6≡ 0 mod p. Each v ∈ Vi will have ov := Ci as its associated solution.

We now describe the hyperedges of Gz. This will implicitly also specify the decision trees Tv.

. Out-group. Within group Vi, for any basic monomial m, we leave out ci,m · m(z) out of the

p vertices associated with m for potential in-group hyperedges. Since
∑m

i=0 fi = 0, for any

basic monomial m, it holds that
∑

i ci,m = 0. Hence, for any choice of z, globally we have

left out exactly 0 (mod p) many vertices for potential in-group hyperedges. We can partition

the remaining vertices corresponding to m into p-uniform hyperedges. This can be done with

a canonical choice which depends only the value of zi’s that participate in m, which requires

querying at most d variables.

. In-group. Consider group Vi. If pi(z) = 1 (i.e., Ci(z) = 0), then we will not add any hyperedges

inside Vi. If pi(z) = 0, we will add many hyperedges in a way that no vertex in Vi remains

isolated. First let ρ := z � vars(pi) ∈ {0, 1, ∗}n be the partial assignment obtained by restricting

z to the variables of pi. Consider an equivalence relation between basic monomials defined as

m ∼ m′ iff m(ρ) = m′(ρ) – e.g. for ρ = (1, ∗, ∗, . . . , ∗), the monomials m = z1z2 and m′ = z2 are

equivalent. Since pi(ρ) = 0, it follows that qipi(ρ) is an identically zero polynomial, and hence for

any equivalence classM′ ⊆M, it holds that
∑

m∈M′ ci,m = 0. Thus, for any value of z, we can

partition the vertices (not covered by out-group edges) associated with m ∈M′ into p-uniform

hyperedges. This can be done with a canonical choice which depends only the value of zi’s that

participate in some m ∈M′. This depends only on the value of at most d many zi’s.

It is clear from the above construction that the isolated vertices in Gz are only in Vi for which

pi(z) = 1. Also, the edges incident to any v ∈ Vi associated to m ∈ M can be determined by

querying the variables of pi (which defines ρ) and m. Hence the graph Gz can be described by

81

depth-d decision trees Tv.

Proof of Theorem 8.12. Part 1 follows by combining Lemmas 8.16 and 8.17. Part 2 follows by

combining Lemmas 8.13, 8.14 and 8.15.

8.2.2 PLS, Resolution Width and Circuits

The characterization for communication PLS is known in literature [Raz95, Sok17]. We provide a

proof for completeness and also include a characterization for query PLS.

Theorem 8.18 (PLS, Resolution Width and Circuits).

1. For any unsatisfiable CNF F : PLSdt(S(F)) = Θ(resolution width(F)).

2. For any monotone function f : PLScc(mKW(f)) = Θ(log(monotone circuit size(f))).

Moreover, for any function f : PLScc(KW(f)) = Θ(log(circuit size(f))).

Proof. For Part (2.), by the characterization of circuits using rectangle dags Lemma 4.4, it suffices

to show that for any search problem S ⊆ X × Y ×O, it holds that PLScc(S) = Θ(log rect-dag(S)).

PLS–protocols from Rectangle Dags. Given a rectangle-dag Γ solving S, we show how to

construct a PLS–protocol Π for S with vertex set V same as the set of nodes of Γ. For each vertex

v ∈ V , we have a feasible rectangular set Rv. Protocol Πv on inputs (x, y) works as follows:

if (x, y) ∈ Rv : Output successor sv(x, y) as the child u of v such that (x, y) ∈ Ru and potential

`v(x, y) as the largest distance of v from any leaf.

if (x, y) /∈ Rv: Output successor sv(x, y) as the root and potential `v(x, y) as +∞ (or any integer

larger than depth of the rectangle dag).

It is easy to see that Πv can be implemented as a 2-bit protocol. To verify the correctness of the

PLS–protocol, observe that the only sinks in Gx,y are leaves v such that (x, y) ∈ Rv and hence

ov ∈ S−1(x, y). This shows that PLScc(S) ≤ log rect-dag(S) + 1.

82

Rectangle Dags from PLS–protocols. Given a PLS–protocol Π = (V, {ov,Πv}v) solving S,

we construct a rectangle-dag Γ as follows: We include nodes corresponding to rectangles in

R = {R1, . . . , Rt} obtained as leaves of Πv for each v. Note that t ≤ exp(|V | + maxv |Πv|) =

exp(PLScc(Π)). Consider a rectangle R ∈ R that is obtained as a leaf of Πv for some v ∈ V . It is

labeled by a successor u ∈ V and a potential `. We transition from a rectangle R by running the

protocol Πu which further partitions R into rectangles L1, . . . , Lc where c = exp(|Πu|). Note that

each Lj = R ∩Rj for some Rj that was obtained as a leaf of Πu. If the potential `j of Rj is ≥ `,

we label the node corresponding to Lj with label ov making it a leaf of Γ. Else we add an edge

from Lj to Rj. Finally, to introduce a root node in Γ, we choose any vertex v0 ∈ V and starting

from the root node corresponding to the rectangle X ×Y , we run the protocol Πv0 which partitions

the entire domain into rectangles with leaves among the rectangles R1, . . . , Rt above. Thus the

final number of nodes in Γ is at most exp(|V |+ 2 maxv |Πv|) + exp(|Πv0|) ≤ exp(O(PLScc(Π))), or

alternately log rect-dag(Γ) ≤ O(PLScc(Π)).

The directed graph defined is indeed acyclic, since the edges only go from rectangles with higher

potential to lower. We now verify the correctness conditions in the definition of a rectangle dag:

− Root: We introduced a root corresponding to X × Y .

− Internal Node: Starting from the root, we run a tree-like protocol Πv0 which simply partitions

rectangles. For a node corresponding to R ∈ R, we first run a tree-like protocol which also

partitions rectangles. The only place where we enlarge rectangles is in going from Lj to Rj , and

this is valid because Lj ⊆ Rj.

− Leaves: The leaves correspond to rectangles Lj = R ∩ Rj such that `j > `, thus v is a sink in

Gx,y for all inputs (x, y) ∈ Lj and hence ov ∈ S−1(x, y).

This concludes the proof of Part (2.). For Part (1.), by the characterization of resolution refutations

using conjunction dags (Lemma 4.3), it suffices to show that for search problems S ⊆ {0, 1}n ×O,

it holds that PLSdt(S) = Θ(log conj-dag(S)). The proof works verbatim to the communication case,

by replacing PLS–protocols by PLS–decision trees and rectangle-dags by conjunction-dags.

83

8.2.3 Partial Characterizations

SoPL and Comparator Circuits. One prominent circuit model that currently lacks a charac-

terization via a TFNPcc subclass is comparator circuits [MS92, CFL14]. These circuits are composed

only of comparator gates (taking two input bits and outputting them in sorted order) and input

literals (only positive literals in the monotone case).

We can show an upper bound better than PLScc for comparator circuits. Indeed, we introduced

a new class SoPL (Definition 8.10) generalizing EoPL [HY17, FGMS18] precisely for this. It is easy

to adapt the characterization of circuits via PLScc (Theorem 8.18) to show that

SoPLcc(KW(f)) ≤ O(log(comparator circuit size(f))).

However, we suspect that the converse (SoPL–protocol for KW(f) implies a comparator circuit) is

false. We also lack a proof system that is equivalent to SoPLdt.

PPAD, Z–Nullstellensatz and Z–partition. While we lack an exact characterization of PPADcc

in terms of a computational model, we do get a one sided relationship, namely,

Theorem 8.19 (PPAD, Z–Nullstellensatz and Z–partition).

1. For any unsatisfiable CNF F : PPADdt(S(F)) ≥ Ω(NSZ(F)).

2. For any S ⊆ X × Y ×O : PPADcc(S) ≥ Ω(logχZ(S)).

Proof. We first prove part (2). From a PPAD–protocol Π := (V, v∗, {ov,Πv}v), we can obtain a

nondeterministic protocol Γ for S, whose accepting computations output weights in Z (interpreted

as values of the entries of an M ∈M). The protocol Γ computes as follows on input (x, y): guess a

vertex v ∈ V ;

if v 6= v∗: if v is a sink in Gx,y, accept with weight 1; if v is a source, accept with weight −1;

otherwise reject (i.e., weight 0)

if v = v∗: if v is a source in Gx,y, reject (i.e. weight 0); if v is a sink, accept with weight 2; otherwise

accept with weight 1.

84

In particular, Γ runs Πv(x, y) and then Πpv(x,y)(x, y) and Πsv(x,y)(x, y). The nondeterministic

communication cost of Γ is thus at most 3 times that of Π. By virtue of a PPAD–protocol, it follows

that Γ accepts with overall weight #(sinks) − #(non-distinguished sources) = 1 on every input

(x, y), thus giving us an Z-partition.

A similar proof in the query world (compare with Lemma 8.16) establishes Part (1).

8.3 Separations

With the characterizations of proof systems and computational models in terms of TFNP subclasses,

we can reinterpret the lifting theorems studied in this thesis as follows: For any S ⊆ {0, 1}n ×O, it

holds for m ≥ n∆ for sufficiently large constant ∆, that

FPcc(S ◦ Indnm) = Θ(FPdt(S) · log n) [RM99] : Theorem 2.9

PLScc(S ◦ Indnm) = Θ(PLSdt(S) · log n) Chapter 5 : Theorem 5.1

PPAcc
p (S ◦ Indnm) = Θ(PPAdt

p (S) · log n) [PR18] : Theorem 7.5

Thus, we can prove separations between communication analogs of TFNP sub-classes by lifting

known separations between query analogs of corresponding classes. We discuss the separations

indicated in Figure 8.1.

PLScc *** PPAcc
p . Pitassi and Robere [PR18] showed that for any field Fp, the function Gen

requires monotone Fp-span programs of exponential size. On the other hand, Gen is computable

by polynomial sized monotone circuits. Thus mKW(Gen) is in PLScc, but not in PPAcc
p .

In hindsight, Gen is precisely Horn-Sat, i.e. C-Sat for C = Horn consisting of Horn clauses.

PPAcc
p *** PPADcc. Pitassi and Robere [PR18] exhibit a monotone f (in hindsight, one can take

f := 3Lin(Fp)-Satn) computable with a small monotone Fp-span program (hence mKW(f) ∈ PPAcc)

and such that mKW(f) has an exponentially large R-partition number. However, we showed in

Theorem 8.19 that all problems in PPADcc have a small R-partition number.

85

PPADcc *** PLScc. Consider the R-linear system F = FG,R defined in the proof of Lemma 5.10.

We now observe that S(Fbool) is in fact equivalent to (a query version of) the PPAD-complete

End-of-Line problem. In the End-of-Line problem, we are given a directed graph of in/out-

degree at most 1 and a distinguished source vertex v∗ (in-degree 0); the goal is to find a sink or a

source distinct from v∗ (cf. Definition 8.6). On the other hand, in S(Fbool) we are given a boolean

assignment z ∈ {0, 1}E, which can be interpreted as (the indicator vector of) a subset of edges

defining a (spanning) subgraph Gz of G; the goal is to find a vertex v ∈ V such that either

(1) v = v∗ and out-deg(v) 6= in-deg(v) + 1 in Gz; or

(2) v 6= v∗ and out-deg(v) 6= in-deg(v) in Gz.

The only essential difference between S(Fbool) and End-of-Line is that the graph Gz can have

in/out-degree a large constant k/2 rather than 1. But there is a standard reduction between the two

problems [Pap94]: we may locally interpret a vertex v ∈ V (Gz) with out-deg(v) = in-deg(v) = `

as ` distinct vertices of in/out-degree 1. This reduction also shows that the lifted problem

S(Fbool) ◦ Indm for m = nO(1) admits a O(log n)-cost PPAD-protocol, and is thus in PPADcc. By

contrast, it follows similar to the proof of Lemma 5.10 that (for an appropriate choice of graph G)

PLSdt(S(Fbool)) ≥ Ω(n) and hence by the PLS–lifting theorem, S(Fbool) ◦ Indm is not in PLScc.

PPADScc *** PPAcc
p via End-of-`-Lines. Recall the CSP F = FG,U,R defined in the proof

of Lemma 7.2. For its booleanized version Fbool, it holds that S(Fbool) is infact in the query

class PPADSdt (Definition 8.7). In particular, in the PPADS–decision tree, we can define the

distinguished vertex v∗ as being associated with any vertex from U . Similarly, the lifted problem

S̃ := S(Fbool) ◦ Indmn for m = nO(1) is in the communication class PPADScc. By contrast, we proved

in Lemma 7.2 that PPAdt
p (S(Fbool)) ≥ nΩ(1) and hence by the PPAp–lifting theorem we get that

χFp(S̃) ≥ nΩ(1), which implies that S̃ /∈ PPAcc.

TFNPcc *** PPPcc. We claim that any problem S ⊆ X × Y × O that lies in one of the known

subclasses of TFNPcc (defined in Section 8.1) reduces efficiently to mKW(kCnf-Satn) for constant

k (one can even take k = 3 by standard reductions). We sketch the argument for S ∈ PPPcc; after

86

all, better reductions are known for PLScc and PPAcc
p , namely to Horn-Sat and 3Lin(Fp)-Sat

(see Lemma 8.14).

Proof sketch. Let Π := (V, v∗, {ov,Πv}v) be a PPP–protocol solving S of cost c := PPPcc(S). We

may assume wlog that all the Πv have constant communication cost k ≤ O(1) by embedding the

protocol trees of the Πv as part of the implicitly described bipartite graph. In particular, we view

each Πv as a function X ×Y → {0, 1}k where the output is interpreted according to some fixed map

{0, 1}k → V . Consider a set of n := k|V | (|V | ≤ 2c) boolean variables {zv,i : (v, i) ∈ V × [k]} with

the intuitive interpretation that zv,i is the i-th output bit of Πv. We may encode the correctness

conditions for Π as an unsatisfiable 2k-CNF formula F over the zv,i that has, for each {v, u} ∈
(
V
2

)
,

clauses requiring that the outputs of Πv and Πu (as encoded by the zv,i) should point to distinct

vertices. Finally, we note that computing the i-th output bit (Πv)i : X × Y → {0, 1} reduces

to a large enough constant-size index gadget IndO(1) (which embeds any two-party function of

communication complexity k ≤ O(1)). Therefore S naturally reduces to S(F) ◦ IndnO(1), which by

Lemma 5.9 reduces to mKW(2kCnf-SatO(n)), as desired.

Query-only separations. Beame et al. [BCE+98] showed that PPPdt * PPADSdt and PPAdt *

PPPdt. The latter was generalized by Johnson [Joh11] to show that PPAdt
p * PPPdt. A fascinating

open problem is to show PLSdt * PPPdt; some progress has been made in this direction [BM04].

87

Chapter 9

Summary and Open Problems

In this chapter, we identify some key open problems highlighted in the context of this thesis.

9.1 Lifting Theorems

More Dags. In this thesis, we proved lifting theorems for dag-like communication protocols

where the feasible set corresponded to rectangles and triangles. Can our methods be extended

to prove lower bounds for dags whose feasible sets are intersections of k triangles for k ≥ 2? See

Figure 4.2. This would imply lower bounds for proofs systems such as width-k Resolution over

Cutting Planes [Kra98] and Resolution over linear equations [RT08, IS14].

Question 1. Prove a lifting theorem for F-dags where F := {intersections of k triangles}.

(a) (b) (c) (d)

Figure 9.1: We show lifting theorems for dags whose feasible sets are (a) rectangles or (b) triangles.
It remains open to prove any lower bounds for explicit mKW/CNF search problems when the
feasible sets are (c) block-diagonal, which is a special case of (d) intersections of 2 triangles.

88

Number-on-Forehead Protocols. One of the most important open problems (e.g., [Raz16,

§5]) regarding semi-algebraic proof systems that manipulate low-degree polynomials—where F is,

say, degree-d polynomial threshold functions—is to prove lower bounds on their dag-like refutation

length (tree-like lower bounds are known [BPS07, GP14]). Since degree-d polynomials can be

efficiently evaluated by (d + 1)-party number-on-forehead (NOF) protocols, one might hope to

prove a dag-like NOF lifting theorem. However, we currently lack a good understanding of NOF

lifting even in the tree-like case. We believe the first necessary step should be to settle the following

(a two-party analogue of which was proved in [GLM+16]).

Question 2. Prove a nondeterministic lifting theorem for NOF protocols.

Gadget Size. In Lemma 5.7 we showed that for a k-CNF F with ` clauses and resolution

width w, the composed search problem S(F) ◦ Indnm reduces to mKW(f) for a monotone function

f : {0, 1}N → {0, 1} on N ≤ ` · (2m)k bits for which we get an nΩ(w) lower bound. Suppose

for a moment that a version of Theorem 5.1, proving a 2Ω(w) lower bound, held for a gadget of

constant size m = O(1). Then we could lift any of the known CNF contradictions with parameters

k = O(1), ` = O(n), w = Ω(n), to obtain an explicit monotone function on N = Θ(n) variables,

with essentially maximal monotone circuit complexity 2Ω(N), whereas the current best lower bounds

for an explicit monotone functios is 2N
1/3−o(1) due to Harniz and Raz [HR00].

Question 3. Prove a lifting theorem (∼ Theorems 5.1 and 6.1) with O(1)-sized gadgets.

A weaker question would be to understand lifting theorem with smaller gadget size. A popular

choice of gadget has been the Inner Product gadget on O(log n) bits [GLM+16, CFK+19].

Question 4. Prove a lifting theorem for dag models with the O(log n)-bit Inner Product gadget.

TFNP sub-classes. There are no lower bounds known against PPADScc or PPPcc for an explicit

problem in TFNPcc. For example, we don’t know how to show that PLScc 6⊆ PPADScc or PPAcc 6⊆

PPADScc.

As described in this thesis, we have lifting theorems for FP, PLS and PPA (in fact, PPAp). An

approach to prove the above is to prove a lifting theorem for PPADS which would then allow us to

89

lift the corresponding query separations.

Question 5. Prove a lifting theorem for PPADS (or PPP).

9.2 Direct Lower Bound Methods

Monotone Circuits for Perfect Matching. The Perfect-Matching function on n vertices was

shown to require monotone circuits of size nΩ(logn) by Razborov [Raz85a]. It has been conjectured

that the correct answer is in fact exponential (cf. [Juk12, Research Problem 9.39]). While lifting

theorems have been powerful, it is unclear how to reduce a suitable composed search problem to the

mKW search problem for Perfect-Matching. But perhaps, it is possible to prove the lower bound

directly using the language of dag protocols and ideas inspired by our proof techniques.

Question 6. Prove that Perfect-Matchingn requires monotone circuits of size 2n
Ω(1).

Cutting Planes refutations for Tseitin. A fascinating open problem that is still left open

despite our lifting theorem for triangle-dags, is the task of proving an exponential lower bound on

the Cutting Planes refutation length for Tseitin instances (cf. proof of Corollary 5.3). Interestingly,

relaxing threshold-dags to triangle-dags is quite lossy here, since for any Tseitin instance F and

any bipartition of the input variables, S(F) does have small triangle-dags and in fact, low cost

(tree-like) communication protocols! Thus, any technique to prove Cutting Planes length lower

bound for Tseitin instances must work directly with threshold-dags.

Question 7. Prove that Tseitinn instances require Cutting Planes refutations of length 2n
Ω(1).

9.3 Characterizations of TFNP sub-classes

Approaching from Proof Complexity. We have seen that Resolution depth/width and Null-

stellensatz degree are captured by TFNP sub-classes FP/PLS and PPAp respectively.

Question 8. Are there TFNP sub-classes that are equivalent to other proof systems?

90

Approaching from Monotone Complexity. We have seen that monotone formulas, circuits

and span programs are captured by TFNP sub-classes FP, PLS and PPAp respectively.

Question 9. Are there TFNP sub-classes equivalent to other monotone computational models?

Approaching from TFNP. We can ask whether there are “natural” proof systems or computa-

tional models equivalent to other well-studied TFNP sub-classes. Although, it is not to be taken

for granted that such models should exist. For example, a natural property of computational

models is that any partial monotone function f : {0, 1}n → {0, 1, ∗} can be completed into a total

monotone function f̃ : {0, 1}n → {0, 1} without increasing the computational cost of the model,

since a computational model can be evaluated on inputs in f−1(∗) to produce some output in {0, 1}.

But it is not clear how to use a protocol for mKW(f) for a partial f to extend it to a total f̃ , since

the protocol is undefined if either player gets an input in f−1(∗).

Question 10. What are (if any) proof systems / monotone computational models equivalent to

EoML, SoML, PPAD, PPADS and PPP?

91

Bibliography

[AB87] Noga Alon and Ravi Boppana. The monotone circuit complexity of boolean functions.

Combinatorica, 7(1):1–22, 1987. doi:10.1007/BF02579196.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009. URL: http://www.cambridge.org/catalogue/

catalogue.asp?isbn=9780521424264.

[ABK17] Jayadev Acharya, Arnab Bhattacharyya, and Pritish Kamath. Improved bounds for

universal one-bit compressive sensing. In 2017 IEEE International Symposium on

Information Theory, ISIT 2017, Aachen, Germany, June 25-30, 2017, pages 2353–2357,

2017. doi:10.1109/ISIT.2017.8006950.

[ABRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Pseu-

dorandom generators in propositional proof complexity. SIAM Journal on Computing,

34(1):67–88, 2004. doi:10.1137/S0097539701389944.

[AD08] Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution

width. Journal of Computer and System Sciences, 74(3):323–334, 2008. doi:10.1016/

j.jcss.2007.06.025.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

TOCT, 1(1):2:1–2:54, 2009. doi:10.1145/1490270.1490272.

[BCE+98] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.

The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19,

1998. doi:10.1006/jcss.1998.1575.

92

http://dx.doi.org/10.1007/BF02579196
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1109/ISIT.2017.8006950
http://dx.doi.org/10.1137/S0097539701389944
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1145/1490270.1490272
http://dx.doi.org/10.1006/jcss.1998.1575

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complex-

ity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)

00144-X.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication

complexity theory (preliminary version). In 27th Annual Symposium on Foundations

of Computer Science, Toronto, Canada, 27-29 October 1986, pages 337–347, 1986.

doi:10.1109/SFCS.1986.15.

[BGH+16] Mohammad Bavarian, Badih Ghazi, Elad Haramaty, Pritish Kamath, Ronald L.

Rivest, and Madhu Sudan. The optimality of correlated sampling. Manuscript, 2016.

arXiv:1612.01041.

[BGIP01] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps

between degrees for the polynomial calculus modulo distinct primes. Journal of

Computer and System Sciences, 62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP

question. SIAM J. Comput., 4(4):431–442, 1975. doi:10.1137/0204037.

[BHP10] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof

complexity. In Proceedings of the 42nd Symposium on Theory of Computing (STOC),

pages 87–96. ACM, 2010. doi:10.1145/1806689.1806703.

[Bla38] Archie Blake. Canonical Expressions in Boolean Algebra. University of Chicago Press,

1938. doi:10.2307/2267634.

[BM04] Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and

propositional proof systems. In 19th Annual IEEE Conference on Computational

Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67, 2004.

doi:10.1109/CCC.2004.1313795.

[BP01] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and

future. In Current Trends in Theoretical Computer Science: Entering the 21st Century,

pages 42–70. World Scientific, 2001. doi:10.1142/9789812810403_0001.

93

http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1109/SFCS.1986.15
http://arxiv.org/abs/1612.01041
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1137/0204037
http://dx.doi.org/10.1145/1806689.1806703
http://dx.doi.org/10.2307/2267634
http://dx.doi.org/10.1109/CCC.2004.1313795
http://dx.doi.org/10.1142/9789812810403_0001

[BPR97] Maria Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes

proofs with small coefficients. The Journal of Symbolic Logic, 62(3):708–728, 1997.

doi:10.2307/2275569.

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász–Schrijver

systems and beyond follow from multiparty communication complexity. SIAM Journal

on Computing, 37(3):845–869, 2007. doi:10.1137/060654645.

[BR98] Paul Beame and Søren Riis. More on the relative strength of counting principles. In

Proceedings of the DIMACS Workshop on Proof Complexity and Feasible Arithmetics,

volume 39, pages 13–35, 1998.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.

Journal of the ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

[CCT87] William Cook, Collette Coullard, and György Turán. On the complexity of cutting-

plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/

0166-218X(87)90039-4.

[CFK+19] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi.

Query-To-Communication Lifting for BPP Using Inner Product. In 46th International

Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132

of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:15, 2019.

doi:10.4230/LIPIcs.ICALP.2019.35.

[CFL14] Stephen Cook, Yuval Filmus, and Dai Tri Man Lê. The complexity of the comparator

circuit value problem. ACM Transactions on Computation Theory, 6(4):15:1–15:44,

2014. doi:10.1145/2635822.

[Chu36] Alonzo Church. A note on the entscheidungsproblem. Journal of Symbolic Logic,

1(1):40–41, 1936. doi:10.2307/2269326.

[Chv73] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete

Math., 4(1):305–307, 1973.

94

http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.1137/060654645
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1016/0166-218X(87)90039-4
http://dx.doi.org/10.1016/0166-218X(87)90039-4
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.35
http://dx.doi.org/10.1145/2635822
http://dx.doi.org/10.2307/2269326

[CKLM17] Arkadev Chattopadhyay, Michal Koucky, Bruno Loff, and Sagnik Mukhopadhyay.

Composition and simulation theorems via pseudo-random properties. Electronic

Colloquium on Computational Complexity (ECCC), (14), 2017. URL: https://eccc.

weizmann.ac.il/report/2017/014/.

[CLRS13] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate

constraint satisfaction requires large LP relaxations. In 54th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,

USA, pages 350–359, 2013. doi:10.1109/FOCS.2013.45.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker

Heights, Ohio, USA, pages 151–158, 1971. doi:10.1145/800157.805047.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional

proof systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

[DM18] Irit Dinur and Or Meir. Toward the KRW composition conjecture: Cubic formula lower

bounds via communication complexity. Computational Complexity, 27(3):375–462,

2018. doi:10.1007/s00037-017-0159-x.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

J. ACM, 7(3):201–215, July 1960. doi:10.1145/321033.321034.

[DP11] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search.

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages

790–804, 2011. doi:10.1137/1.9781611973082.62.

[dRMN+19] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere,

and Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof

complexity. Manuscript, 2019.

[dRNV16] Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction

hinders real communication (and what it means for proof and circuit complexity).

95

https://eccc.weizmann.ac.il/report/2017/014/
https://eccc.weizmann.ac.il/report/2017/014/
http://dx.doi.org/10.1109/FOCS.2013.45
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1007/s00037-017-0159-x
http://dx.doi.org/10.1145/321033.321034
http://dx.doi.org/10.1137/1.9781611973082.62

In Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS),

pages 295–304. IEEE, 2016. doi:10.1109/FOCS.2016.40.

[FGMS18] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. End of potential line.

arXiv, 1804.03450, 2018. URL: http://arxiv.org/abs/1804.03450.

[FPPR17] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random CNFs

are hard for cutting planes. In Proceedings of the 58th Symposium on Foundations of

Computer Science (FOCS), 2017. doi:10.2307/2275569.

[Gál01] Anna Gál. A characterization of span program size and improved lower bounds for

monotone span programs. Computational Complexity, 10(4):277–296, 2001. doi:

10.1007/s000370100001.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower

bounds from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,

pages 902–911, 2018. doi:10.1145/3188745.3188838.

[GHKS17] Badih Ghazi, Elad Haramaty, Pritish Kamath, and Madhu Sudan. Compression in a

distributed setting. In 8th Innovations in Theoretical Computer Science Conference,

ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, pages 19:1–19:22, 2017. doi:

10.4230/LIPIcs.ITCS.2017.19.

[GKPW19] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-

communication lifting for P NP. Computational Complexity, 28(1):113–144, 2019.

doi:10.1007/s00037-018-0175-5.

[GKR18] Badih Ghazi, Pritish Kamath, and Prasad Raghavendra. Dimension reduction for

polynomials over gaussian space and applications. In 33rd Computational Complexity

Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 28:1–28:37,

2018.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in

monotone complexity and TFNP. In 10th Innovations in Theoretical Computer Science

96

http://dx.doi.org/10.1109/FOCS.2016.40
http://arxiv.org/abs/1804.03450
http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1145/3188745.3188838
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.19
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.19
http://dx.doi.org/10.1007/s00037-018-0175-5

Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages

38:1–38:19, 2019. doi:10.4230/LIPIcs.ITCS.2019.38.

[GKS16a] Badih Ghazi, Pritish Kamath, and Madhu Sudan. Communication complexity of

permutation-invariant functions. In Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January

10-12, 2016, pages 1902–1921, 2016.

[GKS16b] Badih Ghazi, Pritish Kamath, and Madhu Sudan. Decidability of non-interactive

simulation of joint distributions. In IEEE 57th Annual Symposium on Foundations of

Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,

New Jersey, USA, pages 545–554, 2016.

[GKSZ19] Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the

complexity of modulo-q arguments. Manuscript, 2019.

[GLM+16] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.

Rectangles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869,

2016. doi:10.1137/15M103145X.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. Recent

Advances in Mathematical Programming, pages 269–302, 1963.

[Göö15] Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual

Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,

17-20 October, 2015, pages 1066–1076, 2015. URL: https://doi.org/10.1109/FOCS.

2015.69, doi:10.1109/FOCS.2015.69.

[GP14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block

sensitivity. In Proceedings of the 46th Symposium on Theory of Computing (STOC),

pages 847–856. ACM, 2014. doi:10.1145/2591796.2591838.

[GP18a] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity

theory of total functions. J. Comput. Syst. Sci., 94:167–192, 2018. doi:10.1016/j.

jcss.2017.12.003.

97

http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.38
http://dx.doi.org/10.1137/15M103145X
https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1109/FOCS.2015.69
http://dx.doi.org/10.1109/FOCS.2015.69
http://dx.doi.org/10.1145/2591796.2591838
http://dx.doi.org/10.1016/j.jcss.2017.12.003
http://dx.doi.org/10.1016/j.jcss.2017.12.003

[GP18b] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block

sensitivity. SIAM J. Comput., 47(5):1778–1806, 2018. doi:10.1137/16M1082007.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.

partition number. In Proceedings of the 56th Symposium on Foundations of Computer

Science (FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting

for BPP. In 58th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 132–143, 2017. doi:

10.1109/FOCS.2017.21.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings

of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,

Berkeley, California, USA, pages 6–20, 1986. doi:10.1145/12130.12132.

[HC99] Armin Haken and Stephen Cook. An exponential lower bound for the size of monotone

real circuits. Journal of Computer and System Sciences, 58(2):326–335, 1999. doi:

10.1006/jcss.1998.1617.

[HG18] Alexandros Hollender and Paul Goldberg. The complexity of multi-source variants

of the End-of-Line problem, and the concise mutilated chessboard. Technical report,

Electronic Colloquium on Computational Complexity (ECCC), 2018. URL: https:

//eccc.weizmann.ac.il/report/2018/120/.

[HKV15] Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication with

partial noiseless feedback. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26,

2015, Princeton, NJ, USA, pages 881–897, 2015.

[HP17] Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and in-

terpolation. In 58th IEEE Annual Symposium on Foundations of Computer Sci-

ence, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 121–131, 2017.

doi:10.1109/FOCS.2017.20.

98

http://dx.doi.org/10.1137/16M1082007
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.1145/12130.12132
http://dx.doi.org/10.1006/jcss.1998.1617
http://dx.doi.org/10.1006/jcss.1998.1617
https://eccc.weizmann.ac.il/report/2018/120/
https://eccc.weizmann.ac.il/report/2018/120/
http://dx.doi.org/10.1109/FOCS.2017.20

[HP18] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Information

Processing Letters, 131:15 – 19, 2018. doi:10.1016/j.ipl.2017.11.002.

[HR00] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings

of the 32nd Symposium on Theory of Computing (STOC), pages 378–387. ACM, 2000.

doi:10.1145/335305.335349.

[HRST17] Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-

case depth hierarchy theorem for boolean circuits. J. ACM, 64(5):35:1–35:27, 2017.

doi:10.1145/3095799.

[HY17] Pavel Hub’avcek and Eylon Yogev. Hardness of continuous local search: Query

complexity and cryptographic lower bounds. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,

Spain, Hotel Porta Fira, January 16-19, pages 1352–1371, 2017. doi:10.1137/1.

9781611974782.88.

[IS14] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combi-

nations. In Proceedings of the 39th Mathematical Foundations of Computer Science

(MFCS), pages 372–383. Springer, 2014. doi:10.1007/978-3-662-44465-8_32.

[Jaf06] A.M. Jaffe. The millennium grand challenge in mathematics. 53:652–660, 06 2006.

[Joh11] Alan S. Johnson. Reductions and propositional proofs for total NP search problems. UC

San Diego Electronic Theses and Dissertations, 2011. URL: https://escholarship.

org/uc/item/89r774x7.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is

local search? J. Comput. Syst. Sci., 37(1):79–100, 1988. doi:10.1016/0022-0000(88)

90046-3.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of

Algorithms and Combinatorics. Springer, 2012.

99

http://dx.doi.org/10.1016/j.ipl.2017.11.002
http://dx.doi.org/10.1145/335305.335349
http://dx.doi.org/10.1145/3095799
http://dx.doi.org/10.1137/1.9781611974782.88
http://dx.doi.org/10.1137/1.9781611974782.88
http://dx.doi.org/10.1007/978-3-662-44465-8_32
https://escholarship.org/uc/item/89r774x7
https://escholarship.org/uc/item/89r774x7
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1016/0022-0000(88)90046-3

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a

symposium on the Complexity of Computer Computations, held March 20-22, 1972, at

the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pages

85–103, 1972. URL: http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf.

[KMR17] Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectan-

gles by juntas and weakly-exponential lower bounds for LP relaxations of csps. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-

ing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 590–603, 2017.

doi:10.1145/3055399.3055438.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, 1997.

[Kra97] Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and indepen-

dence results for bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, 1997.

doi:10.2307/2275541.

[Kra98] Jan Krajíček. Discretely ordered modules as a first-order extension of the cutting

planes proof system. Journal of Symbolic Logic, 63(4):1582–1596, 1998. doi:10.2307/

2586668.

[Kra19] Jan Krajícek. Proof Complexity. Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 2019. doi:10.1017/9781108242066.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower

bounds via the direct sum in communication complexity. Computational Complexity,

5(3/4):191–204, 1995. doi:10.1007/BF01206317.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require

super-logarithmic depth. In Proceedings of the 20th Symposium on Theory of Computing

(STOC), pages 539–550. ACM, 1988. doi:10.1145/62212.62265.

100

http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://dx.doi.org/10.1145/3055399.3055438
http://dx.doi.org/10.2307/2275541
http://dx.doi.org/10.2307/2586668
http://dx.doi.org/10.2307/2586668
http://dx.doi.org/10.1017/9781108242066
http://dx.doi.org/10.1007/BF01206317
http://dx.doi.org/10.1145/62212.62265

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the 8th

Structure in Complexity Theory Conference, pages 102–111, 1993. doi:10.1109/SCT.

1993.336536.

[LMV17] James R. Lee, Raghu Meka, and Thomas Vidick. Personal communication. 2017.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in

the decision tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.

doi:10.1137/S0895480192233867.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Proceedings

of the 2nd Conference on Fundamentals of Computation Theory (FCT), pages 565–574,

1979.

[LRS15] James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of

semidefinite programming relaxations. In Proceedings of the Forty-Seventh Annual

ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June

14-17, 2015, pages 567–576, 2015. doi:10.1145/2746539.2746599.

[LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations

and Trends in Theoretical Computer Science, 3(4):263–398, 2009. doi:10.1561/

0400000040.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence

theorems and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

doi:10.1016/0304-3975(91)90200-L.

[MS92] Ernst Mayr and Ashok Subramanian. The complexity of circuit value and network

stability. Journal of Computer and System Sciences, 44(2):302–323, 1992. doi:

10.1016/0022-0000(92)90024-D.

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an

arbitrary field. Combinatorica, 7(1):101–104, 1987. doi:10.1007/BF02579205.

101

http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1137/S0895480192233867
http://dx.doi.org/10.1145/2746539.2746599
http://dx.doi.org/10.1561/0400000040
http://dx.doi.org/10.1561/0400000040
http://dx.doi.org/10.1016/0304-3975(91)90200-L
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1007/BF02579205

[MW18] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic

quasi-polytime: an easy witness lemma for NP and NQP. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,

CA, USA, June 25-29, 2018, pages 890–901, 2018. doi:10.1145/3188745.3188910.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

URL: http://www.cambridge.org/de/academic/subjects/computer-science/

algorithmics-complexity-computer-algebra-and-computational-g/

analysis-boolean-functions.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other

inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:

10.1016/S0022-0000(05)80063-7.

[PR18] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs

over any field. In Proceedings of the 50th Symposium on Theory of Computing (STOC),

pages 1207–1219. ACM, 2018. doi:10.1145/3188745.3188914.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. The Journal of Symbolic Logic, 62(3):981–998, 1997. doi:10.2307/

2275583.

[Pud00] Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550,

2000. doi:10.2307/2589349.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs (a survey). In

Proceedings of the 30th Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), volume 8, pages 30–41. Schloss Dagstuhl, 2010. doi:10.4230/

LIPIcs.FSTTCS.2010.30.

[Raz85a] Alexander Razborov. Lower bounds on monotone complexity of the logical permanent.

Mathematical notes of the Academy of Sciences of the USSR, 37(6):485–493, 1985.

doi:10.1007/BF01157687.

102

http://dx.doi.org/10.1145/3188745.3188910
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1145/3188745.3188914
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.2307/2589349
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1007/BF01157687

[Raz85b] Alexander Razborov. Lower bounds on the monotone complexity of some Boolean

functions. Doklady Akademii Nauk USSR, 285:798–801, 1985.

[Raz89] Alexander A. Razborov. On the method of approximations. In Proceedings of the

21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,

Washigton, USA, pages 167–176, 1989. URL: https://doi.org/10.1145/73007.

73023, doi:10.1145/73007.73023.

[Raz95] Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments

of bounded arithmetic. Izvestiya of the RAN, pages 201–224, 1995.

[Raz16] Alexander Razborov. Proof complexity and beyond. SIGACT News, 47(2):66–86,

2016. doi:10.1145/2951860.2951875.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combina-

torica, 19(3):403–435, 1999. doi:10.1007/s004930050062.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,

12(1):23–41, 1965. doi:10.1145/321250.321253.

[Ros97] Arnold Rosenbloom. Monotone real circuits are more powerful than monotone boolean

circuits. Information Processing Letters, 61(3):161 – 164, 1997. doi:https://doi.

org/10.1016/S0020-0190(97)00007-0.

[RS10] Alexander A. Razborov and Alexander A. Sherstov. The sign-rank of ac0. SIAM J.

Comput., 39(5):1833–1855, 2010. doi:10.1137/080744037.

[RT08] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.

Annals of Pure and Applied Logic, 155(3):194–224, 2008. doi:10.1016/j.apal.2008.

04.001.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J.

ACM, 39(3):736–744, 1992. doi:10.1145/146637.146684.

[RY17] Anup Rao and Amir Yehudayoff. Communication Complexity. In preparation, 2017.

URL: https://homes.cs.washington.edu/~anuprao/pubs/book.pdf.

103

https://doi.org/10.1145/73007.73023
https://doi.org/10.1145/73007.73023
http://dx.doi.org/10.1145/73007.73023
http://dx.doi.org/10.1145/2951860.2951875
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/https://doi.org/10.1016/S0020-0190(97)00007-0
http://dx.doi.org/https://doi.org/10.1016/S0020-0190(97)00007-0
http://dx.doi.org/10.1137/080744037
http://dx.doi.org/10.1016/j.apal.2008.04.001
http://dx.doi.org/10.1016/j.apal.2008.04.001
http://dx.doi.org/10.1145/146637.146684
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf

[She11] Alexander Sherstov. The pattern matrix method. SIAM Journal on Computing,

40(6):1969–2000, 2011. doi:10.1137/080733644.

[SKLS18] Ankit Shah, Pritish Kamath, Shen Li, and Julie A. Shah. Bayesian inference of

temporal task specifications from demonstrations. In Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pages 3808–3817, 2018.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean

circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory

of Computing, 1987, New York, New York, USA, pages 77–82, 1987. doi:10.1145/

28395.28404.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the

12th Computer Science Symposium in Russia (CSR), pages 294–307. Springer, 2017.

doi:10.1007/978-3-319-58747-9_26.

[SZ09] Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed

functions. Quantum Information and Computation, 9(5–6):444–460, 2009.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness with

connections to cryptography. In 59th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158, 2018.

doi:10.1109/FOCS.2018.00023.

[Tar88] Éva Tardos. The gap between monotone and non-monotone circuit complexity is

exponential. Combinatorica, 8(1):141–142, 1988. doi:10.1007/BF02122563.

[Tur37] A. M. Turing. On computable numbers, with an application to the entscheidungsprob-

lem. Proceedings of the London Mathematical Society, s2-42(1):230–265, 1 1937.

doi:10.1112/plms/s2-42.1.230.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,

1987. doi:10.1145/7531.8928.

104

http://dx.doi.org/10.1137/080733644
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1109/FOCS.2018.00023
http://dx.doi.org/10.1007/BF02122563
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1145/7531.8928

[Ver99] Nikolai K. Vereshchagin. Relativizability in complexity theory. In Provability, Com-

plexity, Grammars, volume 192 of AMS Translations, Series 2, pages 87–172. American

Mathematical Society, 1999.

[Wig19] Avi Wigderson. Mathematics and Computation. Princeton University Press, 2019.

URL: https://www.math.ias.edu/files/mathandcomp.pdf.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the

26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,

California, USA, June 8-10, 2011, pages 115–125, 2011. doi:10.1109/CCC.2011.36.

[Wu17] Xinyu Wu. The uniform marginals lemma in [GPW17]. Manuscript, 2017. URL: https:

//www.andrew.cmu.edu/user/xinyuw1/papers/uniform-marginals-lemma.pdf.

[WYY17] Xiaodi Wu, Penghui Yao, and Henry Yuen. Raz-McKenzie simulation with the inner

product gadget. Electronic Colloquium on Computational Complexity (ECCC), (10),

2017. URL: https://eccc.weizmann.ac.il/report/2017/010/.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing

(preliminary report). In Proceedings of the 11h Annual ACM Symposium on Theory

of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

doi:10.1145/800135.804414.

105

https://www.math.ias.edu/files/mathandcomp.pdf
http://dx.doi.org/10.1109/CCC.2011.36
https://www.andrew.cmu.edu/user/xinyuw1/papers/uniform-marginals-lemma.pdf
https://www.andrew.cmu.edu/user/xinyuw1/papers/uniform-marginals-lemma.pdf
https://eccc.weizmann.ac.il/report/2017/010/
http://dx.doi.org/10.1145/800135.804414

	Introduction
	Complexity Theory
	Outline of the thesis
	Note on the content of this thesis

	Complexity Theory Basics
	Computational Models
	Propositional Proof Complexity
	Query Complexity
	Communication Complexity
	Query-to-Communication Lifting
	Reductions in Query and Communication

	Tools for Lifting Theorems
	Rectangles are non-negative juntas
	Proof of Full Support Lemma

	Dag-like Models and Equivalences
	Abstract dags
	Concrete dags
	Query dags
	Communication dags

	Equivalence of Circuits and Communication Dags

	Monotone Circuit Lower Bounds
	Rectangle Partitioning Scheme
	Lifting for Rectangle-Dags
	Game semantics for dags
	Simplified proof
	Accounting for error

	Reductions to mKW Search Problems
	Generic Reductions
	Reductions to Monotone C-Sat

	Cutting Planes Lower Bounds
	Lifting for Triangle-Dags
	Triangle partition scheme
	Simplified proof

	Triangle Partitioning Scheme
	Properties of Triangle Scheme
	Proof of Triangle Lemma (Lemma 6.4)

	Reductions to CNF Search Problems

	Monotone Span Program Lower Bounds
	Nullstellensatz Lower Bounds
	Lifting Nullstellensatz to Monotone Span Programs

	TFNP in Query & Communication
	TFNP Class Definitions
	Characterizations
	PPAp, Fp-Nullstellensatz and Fp-Span Programs
	PLS, Resolution Width and Circuits
	Partial Characterizations

	Separations

	Summary and Open Problems
	Lifting Theorems
	Direct Lower Bound Methods
	Characterizations of TFNP sub-classes

